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Abstract: In this paper the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to identify and model a real 
debutanizer column in one of the Iranian refineries. The outputs of dynamic model in addition to recent inputs 
depend on previous outputs and inputs. Selected inputs and outputs are those that will be used as manipulated and 
controlled variables. The type and number of membership functions obtain from error and trial approach and optimal 
configuration is chosen by root mean square error (RSME) criterion. According to RMSE between real and 
simulated outputs, the obtained model is acceptable with the aim of control.  
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1. Introduction 

Distillation of multicomponent mixtures is one 
of the most common separation operations in the 
chemical industry and refineries. Distillation is a 
multivariable constrained, coupled, nonlinear, 
nonstationary process with complex dynamic 
structure. Distillation columns consume high level of 
energy that an accurate and tight control of those can 
decrease a large amount of energy consumption in 
refineries.[1] 

In addition to more classical identification 
methods such as NARMAX modeling [2], [3] a new 
set of methods has been developed recently which 
apply artificial neural networks to the tasks of 
identification and control of dynamic systems. These 
works are supported by two of the most important 
capabilities of neural nets: their ability to learn [4], 
[5], (based on the optimization of an appropriate error 
function) and their good performance for the 
approximation of nonlinear functions [6], [7]. 

At present, most of the works on system 
identification using neural nets are based on 
multilayer feedforward neural networks with 
backpropagation learning or more efficient variations 
of this algorithm. These methods have been applied 
to real processes and they have shown an adequate 
behavior .It is important to remark that most of them 
use static discrete-time models that capture the 
dynamics of the real process through the use of 
tapped-delay lines in the model inputs and 
outputs[8],[9]. A number of drawbacks associated 
with this type of models may appear in the 
identification of complex dynamic systems, such as 
difficulties in selecting the appropriate number of 
required delays and, in some cases, poor 

identification performance when implemented on-line 
after training off-line, due to training deficiencies. 

Dynamic networks are generally more powerful 
than static networks (although somewhat more difficult 
to train). Because dynamic networks have memory, 
they can be trained to learn sequential or time-varying 
patterns. This has applications in such disparate areas 
as prediction in financial markets [10], channel 
equalization in communication systems [11], phase 
detection in power systems [12], sorting [13], fault 
detection [14], speech recognition [15], and even the 
prediction of protein structure in genetics [16]. You 
can find a discussion of many more dynamic network 
applications in [17]. 

Engell et al. [18] used a semi-batch reactive 
distillation process. A comparison was carried out 
between conventional control structures and model-
based predictive control by using a neural net plant 
model. Brizuela et al. [19] used a nonlinear model of 
the process for prediction of future outputs that using a 
feed forward neural network (FNN). Wen et al. [20] 
obtain some new results on system identification with 
dynamic neural networks. They concluded that the 
gradient descent algorithm for weight adjustment is 
stable in an L∞ sense and robust to any bounded 
uncertainties. Li Shurong et al. [21] used dynamic 
neural network to learn the input-output behaviors of a 
binary distillation column by combining the 
mechanistic property. The convergence of the 
algorithm was discussed by using the Lyapunov 
method. Based on the identified model, a nonlinear 
adaptive controller was designed, which can preserve 
the stability and robustness of the closed loop system. 
Calderon et al. [22] worked with the Dynamical 
Recurrent Neural Network as a tool for system 
identification and trained the network using a time-
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dependent backpropagation learning algorithm and 
showed that for modeling a nonlinear dynamical 
system, their neural device had good performance for 
interpolation and extrapolation, and was very robust 
in the presence of noise. 
2. Distillation column dynamic modeling 

In this section the required equations to obtain 
mathematical modeling is described. The column for 
which the model is presented separates a single 
multicomponent liquid feed into two liquid products 
in a tray-type distillation column. The column is 
equipped with a reboiler and a total condenser. 

In most models to simplify the equations usually 
some assumptions are considered. In mathematical 
modeling usually the model assumes that vapor 
holdups are negligible and that the effluent streams are 
in thermodynamic equilibrium. The column pressure is 
assumed to remain constant throughout the dynamic 
tests. The dynamic of the reboiler and the condenser 
are neglected. Finally, the dynamic changes in internal 
energy on the trays are assumed to be so rapid that the 
energy equation reduces to an algebraic equation. 

With the foregoing assumptions, the mathematical 
dynamic model can be expressed by the following set 
of differential and algebraic equations. 

 
 
Overall mass balance for each tray: 
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Component balance for each tray: 
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Energy balance for tray n: 

01111   nnnnnnnn HVhLHVhL                                                                           (3) 
 
Tray hydraulics: 
If the Francis Weir formula is used, the relationship is: 

2/333.3 nn lhL                                                                                                                                   (4) 
 
Where l is the length of weir in feet, hn is the height of liquid over weir in feet, and Ln is the liquid leaving stage n, 
ft³/sec. 
 
Phase equilibrium: 

jnjnjn xKy ,,,                                                        (5) 
Murphree vapor-phase efficiency: 
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where the superscript A denotes actual concentration.[23] 
 
 
3. Adaptive Neuro-Fuzzy Inference System 
(ANFIS) 

Usual approaches to system modeling rely 
heavily on mathematical tools which emphasizes a 
precise description of the physical quantities involved. 
By contrast, modeling approaches based on neural 
networks and fuzzy logic are becoming a viable 
alternative where the earlier conventional techniques 
fail to achieve satisfactory results.  Neuro-fuzzy 
modeling is concerned with the extraction of models 
from numerical data representing the behavioral 
dynamics of a system. 

This modeling approach has a two-fold purpose: 
 It provides a model that can be used to 

predict the behavior of the underlying system 
in range of operation. 

 This model may be used for controller 
design. 

The basic idea behind the adaptive neuro-fuzzy 
learning techniques is very simple. These techniques 
provide a method for the fuzzy modeling procedure to 
learn information about data set, in order to compute 
the membership function parameters that best allow 
the associated fuzzy inference system to track the 
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given input-output data. ANFIS constructs an input-
output mapping based on both human knowledge (in 
the form of fuzzy if-then rules) and simulated 
input/output data pairs. It serves as a basis for building 
the set of fuzzy if-then rules with appropriate 
membership functions to generate the input output 
pairs. 

The parameters associated with the membership 
functions are open to change through the learning 
process. The computation of these parameters (or their 
adjustment) is facilitated by a gradient vector, which 

provides a measure of how well the ANFIS is 
modeling the input output data for a given parameter 
set. Once the gradient vector is obtained, 
backpropagation or hybrid learning algorithm can be 
applied in order to adjust the parameters. 
3.1. ANFIS architecture 

ANFIS architecture consists of five layers with 
the output of the nodes in each respective layer is 
represented by Oi,l where i is the ith node of layer l 
[24]. A simple architecture of ANFIS is shown in Fig 
1. 

 
 
Layer 1: Generate the membership grades 

),(,1 xO iAi                           For i=1, 2, 
                                                                                                                                                                              (7) 

)(2,1 xO iBi                       For   i=3, 4, 
where x (or y) is the input to the node and Ai (or Bi_2) is the fuzzy set associated with this node such as the 
generalized bell function 
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Where {ai, bi, ci} is the parameter set referred to as premise parameters. 
Layer 2: Generate the firing strengths by multiplying the incoming signals and outputs the t-norm operator result,e.g. 
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Layer 3: Normalize the firing strengths 
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Layer 4: Calculate rule outputs based on the consequent parameters {pi, qi, ri} 

),(,4 iiiiiii ryqxpwfwO                                     (11) 
Layer 5: Computes the overall output as the summation of incoming signals 

overall output = 
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Fig. 1 ANFIS architecture for two rules 
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3.2. Hybrid learning algorithm 
 Forward pass 
In the forward pass of the hybrid learning 

algorithm, node outputs go forward until layer 4 and 

the consequent are identified by the least-squares 
method. When the values of the premise parameters 
are fixed, the overall output can be expressed as a 
linear combination of the consequent parameters
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which is linear in the consequent parameters p1, q1, r1, p2, q2 and r2 
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If X matrix is invertible then 

fXW 1                                                                                                          (15) 
Otherwise a pseudo-inverse is used to solve for W. 

fXXXW TT 1)(                                                                                                                                     (16) 
 Backward pass 

In the backward pass, the error signals propagate backward and the premise parameters are updated by gradient 
descent. 
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where η is the learning rate for aij. The chain rule is used to calculate the partial derivatives used to update the 
membership function parameters. 
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The partial derivatives are derived as follows: 
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The last partial derivative depends on the type of membership functions used. The parameters of the other 
membership functions are updated in the same fashion. 
The gradient is then obtained as 
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4. Description of the plant 

The column is located in one of the Iranian 
refineries and it is part of naphtha splitter plant. 
 In the debutanizer column C3 (propane) and C4 
(butane) are removed as heavier composition as C5 
(pentane). 

The debutanizer column is required to: 
* make certain about adequate fractionation in the 

debutanizer; 

* minimize the C5 (stabilized gasoline) content in 
the debutanizer top product (L.P.G splitter feed), 
while respecting the limit enforced by law; 

* minimize the C4 (butane) content in the 
debutanizer bottoms (Naphtha splitter feed). 

A detailed scheme of the debutanizer column is 
shown in Fig. 2. A number of sensors are installed on 
the plant to monitor product quality. The subsets of 
sensors relevant to the described application are listed 
in Table 1, together with the corresponding 
description.

 

 
Fig. 2 Schematic diagram of debutanizer column 

 
Table 1.  Sensors relevant to the describe application and corresponding characteristics. 

Tag Description units 
TI 6001 
FI 6000 
TI 6002 
TI 6006 
PI 6006 
FI 6002 
FI 6001 
G.C 

Feed temperature 
Feed flow 
Bottom temperature 
Top temperature 
Top pressure 
Reflux flow 
Steam flow 
Gas Chromatograph  

º C 
Kbbl / day 
º C 
º C 
bar 
m³ / hr 
m³ / hr 
mole fraction 
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6. Results and Discussions 
As shown in Fig.2 there are five control loops in 

debutanizer column, so, there are five controlled 
variables and five manipulated variables. And 
another variable that is changing during the column is 
operation is the feed flow rate. The model is 
structured on the base of inputs, that are manipulated 

variables in control loops (reflux flow, steam flow 
entering to reboiler, cooling water flow entering to 
condenser, top and bottom product flows) plus feed 
flow variable ,and outputs which are controlled 
variables (top and bottom temperatures, pressure of 
column, liquid level of drum and reboiler). 

 
Fig.3   Real and Simulated outputs of training Data 

 
 
 

 

 
Fig.4   Real and Simulated outputs of validation Data 

Real Simulated 
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Fig.5   Absolute error between real and simulated outputs of validation data 

  
 

In this paper the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) is considered as a new 
approach for modeling. In comparison of ANN and 
ANFIS, the performance of ANFIS is better than 
ANN and also, ANFIS has other advantages than 
ANN. ANN is more time consuming process than 
ANFIS. In ANN, number of layers, number of each 
layer’s node and type of transfer functions should be 

obtained from trial and error method that they are 
time consuming process but, in ANFIS just number 
of membership function and type of them must be 
selected that suitable result is usually obtained after 
four or five trial. However an ANN model is 
constructed and the RMSE of validation data have 
been shown in Table 4. 

 
Table 4. RMSE of validating data for ANFIS and ANN model 

  

Top 
temperatur
e (°C) 

Bottom 
temperature 
(°C) 

Top 
pressure 
(bar) 

Level of 
reboiler 
liquid (%) 

Level of 
drum liquid 
(%) 

RMSE (ANFIS model) 0.618 0.785 0.232 6.407 6.710 

RMSE (ANN model) 0.956 0.854 0.239 7.852 6.965 
 
7. Conclusion 

As known the distillation column is severe 
nonlinear system and to achieve the mathematical 
model many nonlinear and linear differential and 
algebraic equations should be solved that this is 
difficult and time consumer work. So, other methods 

as artificial neural networks and fuzzy logic or 
combination of both of them are employed. Adaptive 
neuro-fuzzy inference system (ANFIS) can use 
previous inputs and outputs to obtain new outputs.  
ANN model, the ANFIS model is faster and more 
accurate. 
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