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1. Introduction.
H =H (—w0,0 = ;
Let 7 1’( ) is a space of analytical in the upper semi plane functions f(@)=/(x+iy), y>0
meeting the condition
1

f@+y¥@&p<g 0<p<eo

0

Tp(f;y)={f

—o0

Tw(f;y)=sup‘f(x+iy)‘<oo, p=ow, —w<x<onm,

L (—o0,00 —
et 7 (=o0,0) means a space of all measured on (~00,00) functions for which

1

e, ={ [l ] < 0<p <

L

_ (A)
and when P =

/@, = sup /()<

—00< X <00

0<p<l

L
Clearly, if pzl , the set 7 is space with the norm defined by (A). If > the formula (A) does not

L
define a norm since the triangle inequality is not satisfied. However, in this case 7 is a linear metric space.

- o L)
For the entire functions of the degree within the space an inequality (see [1], p.150)
11

o, (x)],, = co 7o, ()], 1<p<q<e

(1)
is known as Nikolsky’s inequality, (see [1], p.137-138) also an inequality
<% k = - 1<p< —
o (o), <mo'lo, (), » k=123, 1= p=on, M—cons N

is known as Bernshtein’s inequality.
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O0<p<l

Let’s underline, that an analog of an inequality (2) when

numbers k=12,3,..
S(x)e L, (—o0,00)

, while for the fractional number k>0 if O<p<l

possessing derivatives of a fraction order were investigated by us in works [4] and [5].

2. Problem formulation.

is calculated by the author [2] for natural

in [3]. Some properties of the function

The aim of the work is to receive an analog of an inequality (1), (2) and an analog of one inequality of Hardy-

. sl H (—CX)’CX))
Littlewoods [6] within the spaces 7 .

3. Subsidiary facts.
For proving the basic result the following is urgent.

f(z) eH, (—oo;oo)

1. It is known (see [7], formulae (2.7)) that for the function

; 17 . Y =W
SG+iy)=—| ft+iy,) dt, y>y,20
S Ty =0 5

f(z)eH,(~0;)

2. The analytical function in the upper semi plane has a representation (see [7])

f(t+iy1)

1 00
f(2)=—-— , dt
27i -[O t+iy, —z y>y>0
“4)
3. Integral
o p
.[ ‘f(x+iy)‘ dxz(/)(y)
®)
as a function from - does not increase (see [8])
4. The inequality (see [7])
Hf'(Z)HHp < ||f(x)||Lp , v>0, z=x+iy
(6)
occurs.
5. If
2 =
{ [ f(re"ﬂ]"d(p}p —ofi-r)"}  p=o,
1 0
oy, | 11
IV@@Wde =O{O—r% pﬁ},(%<p<q, £=0,
0 (7
then correlations received by Hardy and Littlewoods occur (see [9]).
4. Basic results.
Theorem 1. If f(x * ly) < Hp (_ OO;OO)’ O<ps<eo , then an inequality occurs:
1
1) 4
Bl clp)=|—| —.
ﬂ(f;y)ﬁ C(P)(y _yo)1 pr(f;yo)’ 0<p<l, (p) (”j 2-p V>y0>0, (8)
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L _ 1p[ 4a )
H =ttt 1o <2 <01 (575 o

0<C(p)<2, 0<p<g<on  iwq=%, Clr.0)=(7)r

Let’s mark that the constant

f(x+iy)€Hp(—oo;oo), O<p<mo

> then

Theorem 2. If and there is a derivative of the order k , then an

inequality:

Tp(f(“;y)sc(p,k)(y—yo)‘kTp(f;yo), y>y,>0 k=12,3,...

(10)
occurs, when pzl constant C(p ke ) doesn’t depend on?.
Further C(p ’k) means a constant, depending on p-k.
Theorem 3. If functionf(z) < Hp’ / (Z) < HP (_ OO;OO) , then when Y>>0 an inequality
1
A P w(y _yo)
{Hf’(z)‘pdx} <c— % z=x+iy, 1< p<o
o Y=W
(11

\0; .
where ( 2 )LP -is a module of continuity (see [1], p. 174-180) of the boundary function / (x) in
Lp (— oo;oo) )

,i.e. w(d;f)Lp =51<1(1;)Hf(x+u)—f(x)HL

From theorem 2 and 3 the following stems:
Corollary fact 1. If the condition

Tp(f;y0)=o(y0*“), a >0,
is fulfilled, then

—k—
T,(f“0) =00 ") k=12,..; y>2, ¥,>0.
This is an analog of one result of Hardy and Littlewoods [10], calculated for periodical functions in the class

H, (-7, 7)

L (—o0,00
Corollary fact 2. If the boundary function J(x)e 4 (=o0,%0) meets the condition
ot ), =00“), O<a<l,
then

D1 @, =0(). 1= p<o, y>y >0

1 1
2) ||f’(z)||Hp =o(y™), S<p<l a<1—;, V> ¥,

Inequality (8) and (9) are at Nikolsky’s type classification (see (1)). Inequality (10) is of Bernstein’s type
classification (see (2)).
Let’s note that inequality (11) is an analog of inequality calculated by Yu. A. Brudniy and Hopengauz for

analytical functions of the unit disk at pzl and at O<p<oo by E. A. Storojenko and Ya. Valashek [11] (for
poly harmonically functions in disk M. F. Timan [12]).
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L (—o0,00
Inverse inequality to inequality (11) for integral functions of the degree <c within the space ”( )

us lemma 1 in [13].
Proving theorem 1.

gives

. . \1p _
In equality (3) we shall replace function J(x+iy) in to functions Lf (x+D)]" e H (—o0,%0), (see [14],

p.101).
. 17 v (rew)dt
f(x+in)) =—| [ f 1+, 2 7
X ly 72"[)[ ( ly )] ()C—t) +(y_y0)

(12)
We shall
1 , =2
F (t,x,v,y,)=—[f(t+iy,)]" 3
p (%3, 30) =—Lf (+iy)] G T (—7)
(13)
from (12)
0 1
fee+iy)=[ [ F,(6,x,9,y,)dt]"
- (14)
stems. Hence it follows
) p o | o . ’
P
[ j | f(x+iy)|dxj < j j F(t,%, 9, ,)dt| dx
7 o (15)
1 >1
as O<p<l and P , then applying Minkovsky’s inequality in the right part of inequality (15) and
considering (13) we receive:
['e] p | oo 1 p
( J |f(x+z'yo>|dx) <J|[ \F,,(r,x,y,y())\pdx} dt =
o o _t i
=%Ilf(t+z'yo>|”[j[(x—r>2+(y—y0>2] "dx} d
Now, let’s estimate integral
o0 7l 0 ,l
I=[[(x=0+ (=301 "dx= [’ +(y=3,)’] "du=
. N )
=2j[u2 +(y—,)*] Pdu =2B,
0 (17
o Y=Yo L
B=[= [+ [=B+8,
0 0 Y=o

y=Yo 2 12

Bi= [ +(r=3)1 dus(y=3) " (y-y)=(r=-») "
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1

0 p
= [ +-2)] dusF
Y=Yo
Thus, integral (17) is estimated as
2
-=

)y P
Considering estimates (8) under inequality (16) we find:
p p o0
1 4 -1 . A\[P
[Hf (x+iy) ‘dxj <—[nj (y=»)" J;‘f(tﬂy)‘ dt
O<p<l,g=1.

-2

(y ) "

1<

(18)

i.e. the theorem is proved for O<p<g<ow

. From
equality (14) we have:

Now, let’s proved a general case

dx

{ﬂ f(x+iy)|qu};: HTFp(t,x,y,yOMtZ

—00

p>q, L>1
as p , then, applying generalized inequality of Minkovsky we receive:
1

P r
Hf(x+iy)HHq < j “ ‘Fp(l‘,x,y,yo)‘% dx}q dt

—o0 | —

Considering designation (13), from the last inequality we receive

J

—00

P

(e=tf +(r=n )|

q q
P dx} dt

e, <222 yoj [t [

(19)
Inner integral in the right part of inequality (19) is estimated in the same way as (17), then, calculating in detail
we receive:

-4

Hx t y yo)z‘pdxé

4q 3 124
2q_p(y yo) P

Considering estimation (20) from inequality (19) we get

(20)

1

1 (1 v 4q o
|rG+inl, <C.p-y)" 7 |f+iv],, C(p’q)_(ﬂj ( j g>p>0

2qg-p

>

The theorem is proved for 0< p<q< OO

Let’s consider when ¢ =% From (12) we got

1 < . P — o dt ;
sup [ferinf S0 | [1rle+iv) <x-(52 +y<y) —yﬂ

—00<x<00

Hence it follows
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[F+),, < &jp (=) ol

i.e. the affirmation of the theorem when g=co. The theorem is proved completely.
Proving theorem 2.

N
Applying inequality (4) to functions (Z — 0) f (Z + S) , where A>0 , Sis a free substantial and
Yo >0

e 71_L°° . M
fz+s)-(z-iv,) —2m£f(t+s+lyl) rin-z)

Hence, differentiating by 2 , we find out that

o PN
f’(z +s) = Az —iyo)’lf(z+s)+#(z —iyO)J. f(z‘+iy1 +S)Mdt.
2ri b t+iy, — z)
(2]
Supposing z=ly at O<p<l from the last inequality we receive
‘f'(s+iyxp Sﬂp(y—yo 7p|f s+iy]p +
1Y T _ /
(o oo Tiesenlg
27 S ‘t +1 y) ‘
. (22)
Consider integral in the right part (22)
J? = I|f(t+s+zy1]Mdt
A t+i(y - Y|
(23)
Applying theorem 1 when O<p<l for integral (23) we receive:
J* <CP)(v,-1,) Hf (i) (=) + (s3] [e=s) 4] ", 3,53, >0 o4
. (24
We choose a substantial A>0 so that Ap=2 and considering that
(=sf +( =2V "< r=2)"
from inequality (24) we receive
du
I <C)n=».) " v=3.) ﬂf utiy,) ——; ;
(u—s) +(y2_y0) . (25)
Now, from inequalities (22), (23), (25) we find out that
j|f (S +zy}pds£(;j (y—yo) r j|f(s+zy]pds+
1 p i ds
| 5= =y C)y=2) Ilf uriy,) | | : > |du
2p 700(1’{ S) (y2 yO) . (26)

Let’s note that
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o d )
I 2 : 2 :”(yz _yo)1

u—s) +(y, =)

27)
Y=o
M=V =Va= Vo =
as V7N 7 >0 and 70 >0 is unconditioned, then supposing that 1 ’ ’ ’ 3
where 2 > Vo> , from inequality (26) considering (27), we receive:
o0 ‘ 2 p - o0 ‘
.Hf(sﬂy)‘p dsé(;j (y—yo) g Hf(s+zy)‘pds+
_ 2p -1
LY (=20 ) (2(r-y yy [
el e N E N (A
2p 3 3 L(28)

As integral (5) doesn’t increase, then from inequality (28) we receive:

]]f'(s +iyz)‘pds < H%}p +C(P)(ij(%)pz (gjzp}(J’J’o )’ T ‘f(u +iy0)‘pdu =

—00

=M<p)<y—y0)”]]f(wz-yo)\”du,

k=1, O<p<l.

Repeating reasoning given above k times; we get the
<
. When I<p<wo

i.e. the theorem is proved for

O0<p<l

affirmation of the theorem for any k when

O0<p<l

we adduce reasoning similar to

, but in this case when integrating inequality (22) we apply Minkovsky’s generalized inequality.
Proving theorem 3.

Let’s denote thatéZ =Y=N , then from inequality (3) we receive:
()= f jggf x+zyl) (x t)dt ET (x—zz‘)gg
Sy g ] 7| (x-1) + €]

Here is considered that
T gt _ T S(x—tydt _
2 (x—t)+¢? (x—tf +&°
Further, replacing variables ¥ —/ = ~U _we receive:
R
: (u +& ) 29)

Let P 1 . Applying Minkovsky’s generalized inequality we calculate that

||f 2§J|u|||f (x+u+iy,) - f(x+iy.0X|de

u
(e +ef . (30)
Stemming from (6) we receive
Hf'(x+u+iy0)—f(x+zy0 H <Hf(x+u) f H (|u| f)

Under (30) we receive:

LS (x+ivg) =/ (t+iv,)]dr.
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, 2¢ (s 1),
z <—=|—
e, <E 17

_2(T L2
§2)2 du_”quJ; j_n(JIJFJZ)

(3D
Let’s consider /i and £
oo|u|a)(|u|:f)Lp £
Ji= [ rdu=[+] =4+ 4,
0 ( +£& ) 0 ¢
Under monotony of the module of continuity we receive:
cue(u; f) (& f)
= [y gy
0 (u2 + y2) g
Under continuity module we receive that:
cuo(usf), - co(rif),
4, = "y = .
2 2
3 (u +<& ) g
Consequently,
o(&:f),
J<A4+4,<C———
g , (32)
similarly

o($:S),

2
<@
and at last we have, that (see (31), (32) and (33))

J,<C

(v
R
The theorem is proved.

5. Conclusion.
T,(/3¥)
and q, being an analog of Nikolsky’s (1) inequality. Theorem 2 shows the connection between functions

; () ; = —
f(x+ly) and its derivative / (x+ly)’ k=1,2.3,... within the spaces HI’( OO’OO) , being an analog of

Bernstein’s (2) inequality. Theorem 3 is an analog of Brudny and Hopengauz’s results (consequences 1 and 2 are
analogs of Hardy-Littlewoods) received for analytical functions in the unit disk.

Let’s note that theorem 1, shows the correlation between quantities at various parameters of p

H (—o0,00 :
Consider, that some issues of approximation functions in spaces # ( ), by whole functions of final
levels learned in this work [13].

6. Comment.
Theorem 1 and 2 are proved by G.Gaimnazarov and theorem 3 is proved by O.G.Gaimnazarov.
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