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Abstract: Embarking on various transformations of linear regression model was investigated with a keen interest on
the core difference between transformed and untransformed variables whose interdependence is closely related.
Mean square error and error diagnostic analysis were adopted as basis for adjudging the best linear regression
model. It was deduced from available results that transformations of logarithm (bases 10 and 7), square root,
reciprocal and inverse square were found to have among others possessed the minimum mean square errors of 0.001
and lesser. In contrary, when compared with the qqg-plots and other residual plots from the diagnostic analysis,
logarithm transformation of base 10 was acknowledged to have performed better among other transformation
competitors. Therefore, error diagnostic analysis should form part of reliable yardsticks apart from the minimum
condition of least mean square error for selecting best linear regression model when transformations of closely
related variables with same number of observations are involved.
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1. Introduction often seen as reducing the degree of the polynomial
Regression model techniques are centred on the required to fit a curve as relevant theoretical
field of econometrics for determining any functional assumptions relating to a selected method of analysis
relationship that may exist between two or more are approximately satisfied making the usual
variables of interest which need not to be based only procedures applicable in order to make inferences
on a priori economic rationale but on the form or about the unknown parameters of interest.
shape of the scatter plot thereby giving rooms for Data transformations are commonly useful tools
transformations that might be required for linearity. that serve many functions in quantitative analysis
Cochran (1947) identified some difficulties including improving the normality of a distribution
which can best be appreciated by considering the main and equalizing variance to meet assumptions and
assumptions regarding the nature of the observations improve effect sizes, thus constituting important
that are necessary before an analysis of variance can aspects of data cleaning and preparations for statistical
be considered valid. it is often assumed that analyses. There are many potential types of data
transformations as mathematical functions of some of
observation 2 17Y27Vn e independently th Iv di iti i
e commonly discussed traditional transformations
normally distributed with constant variance and with include adding constants, square root, converting to
expectations specified by a model which is linear in a logarithms (e.g. base 10, natural logarithm) scales and
set of parameters. applying, inverting and reflecting trigonometric
Transformation is applied in context of transformations such as sine wave transformations
regression analysis as the most powerful tool that is (Berry, 1990; Cleveland, 1984; Draper and Smith,
widely used and one of the most abused as well. It is 1998; Keene, 1995 and Osborne, 2002).
used to offer important set of tools for understanding Moreover, there are many reasons to utilize
the association between two or more variables as transformations as the focus of this paper is on
many important results in statistical analyses follow transformations that improve normality of data as both
from the assumption that the population being parametric and non-parametric tests tend to benefit
sampled or investigated is normally distributed with a from normally distributed data (Zimmerman, 1998).
common variance and additive error structure. While transformations are important tools, they
Simplification of the model is achieved through should be utilized thoughtfully as they fundamentally
transforming the dependent or independent variable in alter the nature of the variable making the
a regression model which often reduce the complexity interpretation of the results somehow more complex.

of the model required to fit the data. This simplicity is
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Keene (1995) pointed out that many of the
approaches to decisions on transformations are
essentially subjective and have led to a widespread
suspicion of the use of any transformation as
unnecessary data transformation should be avoided
and should a data transformation performed in an
event, the rationale for the choice of data
transformation along with interpretation of the
estimates of treatment effects based on transformed
data should be provided. Thus, some authors suggest
reversing the transformation once the analyses are
done for reporting of means, standard deviations,
graphing, etc in which this decision ultimately
depends on the nature of the hypotheses and analyses
which is best left to the discretion of the researcher.

However, when presence of collinearity is
pronounced among the variables of interest, the value
of the estimated coefficients in the sample may differ
markedly from the true value in the population as this
is often seen as a core problem by social scientists.
The univariate objective is generally to create a
transformed variable that is more normally distributed
(Osborne, 2002 and 2008) to cater for the presence or
degree of collinearity as failure to give serious
consideration leads to regression coefficients with
large standard errors and resulted to faulty conclusion.

The aim of this research is to distinctly make a
comparison between transformed and untransformed
variables of regression models using mean square
error (MSE) and error graphical diagnostic criteria to
determine a better fit and recommend an appropriate
measure of transformation that will checkmate the
presence of closely related variables.

2. Estimation Of Parameters In Multiple Linear
Regression Model
The multiple linear regression model is
examined by transforming its variables on bases (10,
7, 5, 2 and exponent), square root, reciprocal, inverse
square root, inverse square, sine and deviates
compared to its unadulterated variables (that is,
untransformed variables). While mean square errors
(MSE) of the analysis of variance (ANOVA) for both
transformed and untransformed variables of the
regression models will be adjudged as the basis of
comparison to determine the most appropriate
working model since number of variables and
observations are equal.

Y, =0, +Bxy + PoXy + Py +t Bxy +E
indicating observational form

Y =8, +Bx,+Bx,+ X +...+ Bx, +&
Y, =B, + Bxy + Bxy, + BiXys +ot BiXy 6,
Y, =B, + Bx;, + Boxy, + BiXgs +ot Bixy, + &
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Y =B, + X, + 5, + X+t Bx, tE,
rewritten in matrix observational form

NI X x, X e ||A] |4
Bl Xy Xy Xy Xy || A] &
BEIL x50 x5 X xy | B &
_-)/;’l_ _1 xnl xn2 xn3 xnk_ _ﬂ_ _6;1_
represented in matrix form
Y=X(+¢ (1
where
Vi
Y
Y=y,
y}’l
Ioxy, X2 X3 X1k
Loxy xy Xy Xk
X =|1 x5 x5 Xy X3k
I ox,, x, x,; Xk
A
A
p= 5
LA
e
82
e=|¢,
_g"

X s called the design matrix.

2.1. Method of Maximum Likelihood for
Estimating £$
Yi = ﬂo +:B1Xi1 +:B2Xi2 +:B3Xi3 +"'+ﬂkXik +é;

E(Yi)zﬂzﬂo X+ B X+ B X+t B X,
V(YI): 5’

¥ ~Mud)
that is,

Yz’ NN(:@) +/6;Xn +132Xi2 +/B3Xi3 +-- '+/6;c)(;ka52)

18) = exp = (-
V278 F{25 }
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the likelihood function becomes " " d 1 1
=i +B) X, +B ) X+ ) Xy +-+B ) X
L(YI,IIZ,...,Y;;ﬂO,ﬂl,...,ﬂk,é‘z) ;Yz ﬁ) A; il @; i2 :@; i3 ﬁ(; ik
n 1 1 5 n n n 2 n n
= - Y - Y= ; : X e X
13 We)(p[ 252 ( i /U) } §X1¥ %EAXZI +ﬁ§le +ﬂz§X1X2+ +18k§)(11)(:k
:(2ﬂ52)%exp{— 2;zi(yx‘_ﬂ)z} 0 n 2 : n 0
X =AY X+ BY XX, +BY XXt Y X
taking the natural logarithm of the likelihood function ; ‘ 0; ‘ '81; o 2; o k; ‘
" ) which can be represented in matrix as
., N Y - ) -
[=-—In(2 -
2 n( & ) 257 2) E/
and thereafter the partial derivatives with respect to nlj1
BosBrsee s B p2048
n t=1 .
— i=1
op, 5’ 22X
[zl
1 < - -
= Y-_ - X.— X.— X —er = X M n n n n ]
52 ;( i ﬁO ﬂl il ﬁZ i2 ﬁ3 i3 ﬂk Lk) n Z)(ll Z)(lz z)(ﬂ z)(lk ﬂo
ol i=l i=l i=l i=l Y
n n 5 n n n 1
setting b, to zero and rearranging ;Xﬂ ;X;‘ ;XEI)% ;X“X% ;X'%" B,
DY SRS RS Y Ay E) 39 foe el g e || 5
T0) PRADYSADY S ADY S ARV Al L
n L=l i=1 i=1 i=1 i=l i
ol Z‘,IXH(Y[_/U) where, - _
1 & o
:7ZXiI(Yi_ﬂo_ﬁlXil_ﬂZXiZ_ﬂ3Xi3_'“_ﬂkXik) 2
55 XTy=|DXY
ol zy
setting 98 to zero and rearranging n :
n n n n n kX
ZX;lX :ﬁ)ZX;l +ﬁz 121"'1@2)(:1)(:2 + ’*‘@ZXLXE/((‘D _;{ i
=1 =1 =1 =1 -1
it therefore follows subsequently, - ., ) . ., -
- X, X X, X,
ol zxik(yi_lu) " ;Il ;lz §l3 ;Ik
— i=1 n n n n n
op, o X'x= ZX; ZAX;lZ ZAX;VX;Z ZX;]X;} ZX;X;/(
i=1 i=1 i=1 i=1 i=1
1 n E
=2 XY =B~ BX,~BX,~PXy——BX,) L : : :
5 AT )RADYAAD P S AD Y S AN ¥
ol Li=1 i=1 i=1 i=1 i=1 i
setting 0B+ to zero and rearranging ,/;0
n n n n n l
D XY =R X+ B XX+ B XX+ + B Xi(5) p= B,
i=l i=1 i=1 i=l i=l
Combining equations (3), (4) and (5) called :
s

normal system of linear equations
rewritten in matrix form as

Tyv _ vT
Xy =X"XB ©

Considering equation (1)
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Y=Xp+¢
E(Y)=pu=Xp
v(y)=o°1
where
Vi
Hy
Y
Y =y, |,u= #;2
. H,
Yo

X isan n x k matrix with i row given by

i £ xn) fi(x)e fixi)] g

- [ﬂ" 2BisBove By ]’ concentrating on estimating

[s

The idea of least square estimation is that we

find an estimator # of # which minimizes the sum
of error squared

- 2
S = z (Yi - H )
i=1
which can be rewritten in matrix form as

S=-x8)(¥-xp)
S=Y"Y -28"X"Y+p"X"XB

differentiating S’ with respect toﬂ ,

95 L axTri2pxTY

as

setting B to zero and rearranging, the result becomes
T _ T
X'XB=X"Y )
called normal system of linear equations.

Resolving equations (6) and (7) from methods of
maximum likelihood and least squares, the estimator

A

B for # becomes
f=x"x)'x"y ®)

2.2. Estimation of Sums of Square Error (SSE) and
Mean Square Error (MSE)
Recall from equation (8) that

A

B=(x"x)'x"y

indicating
Y =X ﬁ
x(xTx)
Y wt = H Y,

Ho, . x(x"x)'x7

nxn 1§

mxn js called Hat matrix and is both symmetric
and idempotent, that’s

H'" = H and HH = H respectively.

e . =Y Yo =Y-XPB=Y-HY =(1-H)
SSE :gfgz(Y—Xﬁ')T(Y—Xfij
CYTY 28" XY+ BT XX
YTV 28" XY+ BT XY
—YTY 28 XY+ p X xX(XTX) XY
:YTY—ZﬁATXTYJr/?ATIXTY

since XTX(XTX)*1 =1
CYTY 28T XY+ BT X T
=YYy -p"Xx"Y
=Y"(I-H)Y

SSE =YTY - B XTY
SSE

n—

MSE =

where

k is the number of estimated parameters excluding
the regression intercept and 7 is the number of
observations.

3. Analysis and Results

XXy, X5, X, are considered in the multiple
linear regression model
Y, = ﬂo +ﬂlXil +ﬂ2X,’2 +ﬂ3Xi3 +ﬂ4X4k +é;
or

Y, =0+ B X +B,X, +B,X;+ B, X, +¢

with closely related variables of interest that are
positively correlated with one another as its data were
simulated through economic rationale in R (a
statistical programming software).
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3.1. Regression Model of the Untransformed
Variables
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Figure 1: Matrix Plot of the Untransformed Variables
of the Regression Model.

Consider the linear model
Yi ::Bo +:B1X1 +:B2X2 +:B3X3 +ﬂ4X4
with estimated model

IA/=—2004813+2.046?(1 +0.738%, +3.2374X, +2.3090%,
Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq
X1 1 2.7345e+10 2.7345e+10
X2 1 1.3028e+06 1.3028e+06
X3 1 42093e+08 4.2093e+08
X4 1 4.5024e+07 4.5024e+07
Res30 1.4351e+07 4.7838e+05

F value Pr(=F)
57162.0765 <2 2e-16 *+**
2.7234 0.1093
8799115 <2 2e-16 ***
941187 9.223p-11 ***

Signif. codes: 0 “***> (0.001 “*** 0.01 *** 0.05 *.” 0.1

1
MSE = 4.7838e+05
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Figure 2: Error Diagnostic  Analysis of the

Untransformed Regression Model.
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3.2

Figure 3: Matrix Plot of the

3579
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Regression Model of the Logarithm (Base
Exponent) Transformed Variables
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Logarithm (Base
Exponent) Transformed Variables of the
Regression Model.

Consider the linear model

log Y=4+/41og X, + S, log X, + S log X, +f,log X,
with estimated model

¥ =1.9840-03640g X, +0.09460g X, +034130g X, +0215%0g X,

Analysis of Variance Table
Response: LOGY

Res

Signif. codes: 0 “**** 0.001

1
MSE = 0.005
Residuals vs Fitted - Normal Q-Q
= :o 200 g ~ - QQ’QZOb
f g% X U I =
R e - s R
e — I —
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Figure 4: Error Diagnostic Analysis of the
Transformed Logarithm (Base Exponent)
Regression Model.

Df SumSq Mean Sq F value Pr(=F)

1 168.956 168.956 348232226 < 22e-16***
1 0.010 0.010 1.9991 0.1677

1 0.837 0.837 172.5939 5.619e-14 ik
1 0533 0.533 109.9036 1.506e-11 *#*
300.146 0.005

#0.01 “*70.05 . 0.1 ¢
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3.3. Regression Model of the Logarithm (Base 10)
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Figure 5: Matrix Plot of the Logarithm (Base 10)
Transformed Variables of the Regression
Model.
Consider the linear model
log, Y=/ + 4 log, X+ log, X, + S log, X; + f,log, X,
with estimated model

os 2o as 15 =25 35

Y=08617+0364l0g, X, +0.094dog, X, +034130g, X, +021590g, X,

Analysis of Variance Table
Response: LOGY

Df SumSq MeanSq F value Pr(>F)
X1 1 31.867 31.867 348232226 <22e-16***
X2 1 0.002 0.002 1.9991 0.1677
X3 1 0.158 0.158 172.5939 5.619e-14 *+*
X4 1 0.101 0.101 109.9036 1.506e-11 ***
Res 30 0.027 0.001

Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 *.” 0.1 *
1
MSE = 0.001
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Figure 6: Error Diagnostic  Analysis of the
Transformed  Logarithm  (Base 10)
Regression Model.

3.4. Regression Model of the Logarithm (Base 7)
Transformed Variables
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Figure 7: Matrix Plot of the Logarithm (Base 7)

Transformed Variables of the Regression
Model.
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Consider the linear model
log, Y=/, + B log X, +f,log, X, + B log, X, + /5, log, X,
with estimated model

Y =0.8617+0.364log, X, +0.0946log, X, +0.3413log, X, +0215%0g, X,

Analysis of Variance Table
Response: LOGY

Df SumSgq MeanSq Fvalue Pr(=F)
X1l 1 31.867 31.867 34823.2226 <22e-16
X2 1 0.002 0.002 1.9991 0.1677
X3 1 0.158 0.158 172.5939 5.619e-14 #ik
X4 1 0.101 0.101 109.9036 1.506e-11 #**
Res 30 0.027 0.001

Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 " 0.1 *
1

MSE = 0.001
Residuals vs Fitted - Normal Q-Q
g2 -7 o™
3 2 -1 e
= | EER I
- Scale-Location - Residuals vs Le\er???
g - oo ° ecc‘é é -7 B““”%‘w .
) i - | BRI A
Figure 8: Error Diagnostic = Analysis of the
Transformed  Logarithm  (Base 7)
Regression Model.

3.5. Regression Model of the Logarithm (Base 5)
Transformed Variables
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Figure 9: Matrix Plot of the Logarithm (Base 5)
Transformed Variables of the Regression
Model.

Consider the linear model
log, Y =4+ log X, + S, log, X, + S, log, X, + 3, log, X,
with estimated model
¥ =2.8623+0.364 llog, X, +0.09460g, X, +0.3413l0g, X, +0.215%0g, X,

Analysis of Variance Table
Response: LOGY
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Df SumSq MeanSq Fvalue Pr(>F)
X1 1 31.867 31.867 348232226 <2 2e-16 %4
X2 0.002 0.002 1.9991 0.1677
X3 1 0.158 0.158 172.5939 5.619e-14 ik
X4 1 0.101 0.101 109.9036 1.506e-11 *#*
Res 30 0.027 0.001

Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 *.” 0.1 *
1
MSE =0.01
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Figure 10: Error Diagnostic Analysis of the
Transformed  Logarithm (Base 5)
Regression Model.

3.6. Regression Model of the Logarithm (Base 2)
Transformed Variables
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Matrix Plot of the Logarithm (Base 2)
Transformed Variables of the Regression
Model.

Consider the linear model

log, Y=/4,+/41log, X, +f,1og, X, + S log, X, + 3, 1log, X,
with the estimated model

Figure 11:

¥ =2.8623+0.364 llog, X, +0.094dog, X, +0.34130g, X, +0.215%0g, X,

Analysis of Variance Table
Response: LOGY

Df  SumSq MeanSq F value Pr(=F)
X1 1 35166 35166 348232226  <22e-16 ¥k
X2 0.02 0.02 1.9991 0.1677
X301 1.74 1.74 172.5939 5.619e-14 ***
X4 1 1.11 1.11 109.9036 1.506e-11 ***
Res 30 0.30 0.01
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Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 " 0.1 *
1
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Figure 12: Error Diagnostic Analysis of the
Transformed  Logarithm (Base 2)
Regression Model.
3.7. Regression Model of the Square Root
Transformed Variables
§
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Figure 13: Matrix Plot of the Square Root
Transformed Variables of the Regression

Model.
Consider the linear model

\/? =L +:BNX1 +ﬁ2\/X2 +ﬁ3\/X3 +ﬂ4\/X4
with the estimated model
¥ =—1.1987+0.8750/X, +0.3251/X, +0.9734/X, +0.6995/X,

Analysis of Variance Table
Response: SQRTY

Df SumSq MeanSq  Fvalue Pr(=F)
X1 1 313321 313321 59489419 < 22e-16#¥*
X2 1 369 369 70.103 2.407e-09 *+*
X3 1 2536 2536 481557 <2 2p-16 ¥k
X4 1 776 776 147312 4.198e-13 #**
Res 30 158 5

Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 " 0.1 *
1
MSE =5
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Residuals vs Fitted Normal Q-Q
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Figure 14: Error Diagnostic Analysis of the Square
Root Transformation Regression Model.

3.8. Regression Model of the Reciprocal Transformed
Variables

000 002 004

Figure 15: Matrix  Plot of the Reciprocal
Transformed Variables of the Regression

Model
Consider the linear model.

}é’:ﬂ0+ﬂl%fl+ﬂz){}(2+ﬂ3){¥3 +ﬂ4%{4

with estimated model

%:—6.83k—5+2.13@—2/VX +3.3103—3/VX +9.58b—2/VX +2.723g—2/VX
1 2 3 4

©0.000 0.004

Analysis of Variance Table
Response: RECIY

Df Sum Sq Mean Sq F value Pr(=F)
X1 1 1.6338e-04 1.6338e-04 11386.518 <22e-16%%*
X2 1 1.7320e-06 1.7320e-06 120679 4.905e-12 *i*
X3 1 7.0580e-06 7.0580e-06 491856 <22e-16 ¥
X4 1 4.1800e-07 4.1800e-07 29.097 7.654e-06 ***
Res 30 4.3000e-07 1.4000e-08

Signif. codes: 0 “***>(0.001 “*** 0.01 *** 0.05 *.” 0.1
1
MSE = 1.4000e-08

190

Residuals vs Fitted Normal Q-Q

E

z s = o e
= g "@M WW
& 1% o~

-

3 - Ty

? L —— — t T T T T

0.000 0.002 0.004 0.006 -2 -1 o 1 2

Fitted values Theoretical Quantiles

Residuals vs Leverage

Scale-Location
o

10

tandardized residuals
420 2
!

0
3
Standardized

---’ cook's distance o
T T T T T T — T T T T T T T
000 ©0.002 0.004 0.006 0.0 0.2 0.4 0.6

00

o L1 I I |

Fitted values Leverage

Figure 16: Error Diagnostic Analysis of the
Reciprocal Transformation Regression
Model.

3.9. Regression Model of the Inverse Square Root
Transformed Variables
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Figure 17: Matrix Plot of the Inverse Square Root
Transformed Variables of the Regression
Model.

Consider the linear model

Y el Al Y syl

with estimated model

¥ =-0.0020+0.0559 } +0.0128/ +0.2796/V +o.0524/
i 100128 Y 102796 ) 100524 )

Analysis of Variance Table
Response: INSQRTY

Df Sum Sq Mean Sq F value Pr(=F)
X1 1 0.0251725 0.0251725 15684.9431 <22e-16%%*
X2 1 0.0000003 0.0000003 0.2001 0.6578555
X1 0.0006043 0.0006043 376.5688 <22e-16 *+*
X4 1 0.0000260 0.0000260 16.1825 0.0003587 ***
Res 30 0.0000481 0.0000016

Signif. codes: 0 “***> 0.001 “**’ 0.01 “*> 0.05 " 0.1 ¢
1
MSE = 0.0000016
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Figure 18: Error Diagnostic Analysis of the Inverse
Square Root Transformation Regression
Model.

3.10. Regression Model of the Inverse Square
Transformed Variables
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Figure 19: Matrix Plot of the Inverse Square

Transformed Variables of the Regression
Model.

Consider the linear model

Jr=hrh Jth JavB Jath

with estimated model

Y:7254@707+2.79<»703/VX|2+L13%04/X22 +1A28@702/X3Z +5'22@’03/ij
Analysis of Variance Table
Response: INSQY

Df Sum Sg Mean Sq F value Pr(=F)
X1 1 5.8481e-09 5.8481e-09 8342.889 <2.2e-16 ¥**
X1 3.3180e-10 3.3180e-10 473370 <22e-16 ¥¥*
1 2.6330e-10 2.6330e-10 375684 < 22e-16 ik
X 1 4.4600e-11 4.4600e-11  63.683 6.596e-09 *i¥
Res 30 2.1000e-11 7.0000e-13

Signif. codes: 0 “***>(0.001 “*** 0.01 *** 0.05 *.” 0.1
1
MSE = 7.0000e-13
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Figure 20: Error Diagnostic Analysis of the Inverse
Square Transformation Regression
Model.

3.11. Regression Model of the Sine Transformed

Variables
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Figure 21: Matrix Plot of the Sine Transformed
Variables of the Regression Model.

Consider the linear model
sinY = 4 + 4 sinX, + 3 sinX, + £ sinX, + 3, sinX,
with estimated model

)A’:—O.28 19+0.1765inX, —0.0033inX, +0.2975inX; +0.0845inX,

Analysis of Variance Table
Response: SINEY

Df SumSq MeanSq Fvalue Pr(>F)
SINEX1 1 0.4648 046483 038618 0.3606
SINEX2 1 0.0000 0.00000 0.0000 0.9991
SINEX3 1 1.2744 127442 23629 0.1347
SINEX4 1 0.1047 0.10467 0.1941 0.6627
Res 30 16.1805 0.53935
MSE = 0.53935
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Figure 22: Error Diagnostic Analysis of the Sine
Transformation Regression Model.

3.12. Regression Model of the Deviate Transformed
Variables
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Figure 23: Matrix Plot of the Deviate Transformed
Variables of the Regression Model.

4. Discussion of Results

The  comparison of  transformed and
untransformed variables of a linear regression model
was examined through various matrix plots, mean
square errors and the normal quantile-quantile plots.

Figures (1, 3, 5,7, 9, 11, 13, 15, 17, 19, 21 and
23) reflected the relationship among individual
variables of interest of the model for both transformed
and untransformed as they all supported fitting a
linear regression model through their scatter plots.
However, the linear regression models fitted for the
logarithm transformations of bases ( 10, 7, 5 & 2)
resulted to same regression coefficients except for
their regression intercepts that differed in values for
base exponent, same for higher bases of ten & seven
and lower bases of five & two whereas for
untransformed, square root, reciprocal, inverse square
root, inverse square, sine and deviate transformations
were found to be negative in value as their regression
coefficients were not in any form related to each other
unlike that of logarithm transformations.
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Consider the linear model
(Yi):ﬂo +,q[Xl Jﬁ}ﬂz(xz Jaj%[){s JQ)%()Q Jaj
with the estimated model
}A’=4l.615@—12+2.04‘()(, —5(1)+7.38%—I(X2 7)}2}3.23()(3 —5(3]+2.30{X4 Jaj

Analysis of Variance Table
Response: DEVY

Df Sum Sq MeanSq  Fvalue Pr(>F)
DEVX1 1 2.7345e+10 2.7345e+10 57162.077 <2.2e-16 *#*
DEVX2 1 1.3028e+06 1.3028e+06 2.7234 0.1093
DEVX3 1 4.2093e+08 4.2093e+08 879.9115 <2.2e-16 ***
DEVX4 1 4.5024e+07 4.5024e+07 94.1187 9.223e-11 ***
Res 30 1.4351e+07 4.7838e+05

Signif. codes: 0 “***> 0.001 “*** 0.01 “** 0.05 " 0.1 *
1
MSE = 4.7838e+05
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Figure 24: Error Diagnostic Analysis of the Deviate
Transformation Regression Model.

The essence of this research work as to which
transformation is adjudged to fit a better linear
regression model was deduced from the matrix plot of
scatter diagram, mean square error and normal
quantile-quantile plot for logarithm of bases (10, 7, 5
and 2), inverse square root, reciprocal and inverse
square transformations. Results reflected logarithm
(bases 7 and 10), reciprocal, inverse square root and
inverse square transformations to be having
comparatively small mean square errors with values
ranging from 7.0000e-13 to 0.001 for figures (6, 8, 16,
18 and 20). It is therefore inferred that for economic
variables of this interest in which they are closely
related, the transformations with minimum mean
square error should be preferred over others but
further consultations from the transformation error
diagnostic analyses in figures (6, 8, 16, 18 and 20)
suggested that logarithmic transformations of bases (7
and 10) should be recognized over others as mean
square error should not be the only minimum criteria
for identifying best fitted transformation of variables
for linear regression model. It was also discovered
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that deviate transformation does not in any way
differed from the untransformed model as both mean
square errors and error diagnostic analyses in figures
(2 and 24) were the same.

5. Conclusion

Transformations of linear regression model was
investigated in this study to determine the
transformation which can be recommended among
logarithm, square root, reciprocal, inverse square root,
inverse square, sine and deviate when closely related
economic variables are involved. Findings revealed
that all logarithmic transformations of different bases
can be engaged as their mean square errors were
relatively small compared to others except for inverse
square root, reciprocal and inverse square
transformations which also displaced higher sense of
belonging in the transformations of linear regression
model with its mean square errors being extremely
very small but unfavoured by other regression model
error diagnostic measures.

Transformation of variables for linear regression
model should be encouraged among users of closely
related economic variables considering its importance
and usefulness in regression analysis but the choice of
transformations to be considered should be guided by
literatures and further diagnostics on linear models.
Therefore, in line with this study, it is advisable to
work with logarithmic transformation of base 10
considering the fact that all the closely related
economic variables involved are positively correlated
which is in line with the conclusion of (Cleveland,

1984).

We  therefore  recommended logarithmic
transformations as being appropriate and suitable
especially of base ten for econometricians,

statisticians and other users of economic variables
with incessant relationship over other transformations
simply for the fact that the results of significance for
untransformed linear regression model remained
unaltered.
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