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Abstract: Embarking on various transformations of linear regression model was investigated with a keen interest on 
the core difference between transformed and untransformed variables whose interdependence is closely related. 
Mean square error and error diagnostic analysis were adopted as basis for adjudging the best linear regression 
model. It was deduced from available results that transformations of logarithm (bases 10 and 7), square root, 
reciprocal and inverse square were found to have among others possessed the minimum mean square errors of 0.001 
and lesser. In contrary, when compared with the qq-plots and other residual plots from the diagnostic analysis, 
logarithm transformation of base 10 was acknowledged to have performed better among other transformation 
competitors. Therefore, error diagnostic analysis should form part of reliable yardsticks apart from the minimum 
condition of least mean square error for selecting best linear regression model when transformations of closely 
related variables with same number of observations are involved. 
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1. Introduction 

Regression model techniques are centred on the 
field of econometrics for determining any functional 
relationship that may exist between two or more 
variables of interest which need not to be based only 
on a priori economic rationale but on the form or 
shape of the scatter plot thereby giving rooms for 
transformations that might be required for linearity. 

Cochran (1947) identified some difficulties 
which can best be appreciated by considering the main 
assumptions regarding the nature of the observations 
that are necessary before an analysis of variance can 
be considered valid. it is often assumed that 

observation nyyy ,...,, 21  are independently 
normally distributed with constant variance and with 
expectations specified by a model which is linear in a 
set of parameters. 

Transformation is applied in context of 
regression analysis as the most powerful tool that is 
widely used and one of the most abused as well. It is 
used to offer important set of tools for understanding 
the association between two or more variables as 
many important results in statistical analyses follow 
from the assumption that the population being 
sampled or investigated is normally distributed with a 
common variance and additive error structure. 

Simplification of the model is achieved through 
transforming the dependent or independent variable in 
a regression model which often reduce the complexity 
of the model required to fit the data. This simplicity is 

often seen as reducing the degree of the polynomial 
required to fit a curve as relevant theoretical 
assumptions relating to a selected method of analysis 
are approximately satisfied making the usual 
procedures applicable in order to make inferences 
about the unknown parameters of interest. 

Data transformations are commonly useful tools 
that serve many functions in quantitative analysis 
including improving the normality of a distribution 
and equalizing variance to meet assumptions and 
improve effect sizes, thus constituting important 
aspects of data cleaning and preparations for statistical 
analyses. There are many potential types of data 
transformations as mathematical functions of some of 
the commonly discussed traditional transformations 
include adding constants, square root, converting to 
logarithms (e.g. base 10, natural logarithm) scales and 
applying, inverting and reflecting trigonometric 
transformations such as sine wave transformations 
(Berry, 1990; Cleveland, 1984; Draper and Smith, 
1998; Keene, 1995 and Osborne, 2002). 

Moreover, there are many reasons to utilize 
transformations as the focus of this paper is on 
transformations that improve normality of data as both 
parametric and non-parametric tests tend to benefit 
from normally distributed data (Zimmerman, 1998). 
While transformations are important tools, they 
should be utilized thoughtfully as they fundamentally 
alter the nature of the variable making the 
interpretation of the results somehow more complex. 
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Keene (1995) pointed out that many of the 
approaches to decisions on transformations are 
essentially subjective and have led to a widespread 
suspicion of the use of any transformation as 
unnecessary data transformation should be avoided 
and should a data transformation performed in an 
event, the rationale for the choice of data 
transformation along with interpretation of the 
estimates of treatment effects based on transformed 
data should be provided. Thus, some authors suggest 
reversing the transformation once the analyses are 
done for reporting of means, standard deviations, 
graphing, etc in which this decision ultimately 
depends on the nature of the hypotheses and analyses 
which is best left to the discretion of the researcher. 

However, when presence of collinearity is 
pronounced among the variables of interest, the value 
of the estimated coefficients in the sample may differ 
markedly from the true value in the population as this 
is often seen as a core problem by social scientists. 
The univariate objective is generally to create a 
transformed variable that is more normally distributed 
(Osborne, 2002 and 2008) to cater for the presence or 
degree of collinearity as failure to give serious 
consideration leads to regression coefficients with 
large standard errors and resulted to faulty conclusion. 

The aim of this research is to distinctly make a 
comparison between transformed and untransformed 
variables of regression models using mean square 
error (MSE) and error graphical diagnostic criteria to 
determine a better fit and recommend an appropriate 
measure of transformation that will checkmate the 
presence of closely related variables. 

  
2. Estimation Of Parameters In Multiple Linear  

Regression Model 
The multiple linear regression model is 

examined by transforming its variables on bases (10, 
7, 5, 2 and exponent), square root, reciprocal, inverse 
square root, inverse square, sine and deviates 
compared to its unadulterated variables (that is, 
untransformed variables). While mean square errors 
(MSE) of the analysis of variance (ANOVA) for both 
transformed and untransformed variables of the 
regression models will be adjudged as the basis of 
comparison to determine the most appropriate 
working model since number of variables and 
observations are equal. 

iikkiiioi xxxxY   ...332211  
indicating observational form 

111331221111 ...   kko xxxxY
 

222332222112 ...   kko xxxxY
 

333333223113 ...   kko xxxxY
 

  
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represented in matrix form 

  XY   (1) 
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X  is called the design matrix. 

 
2.1. Method of Maximum Likelihood for 

Estimating s

iikkiiii XXXXY   3322110  
  ikkiiii XXXXY   3322110  
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the likelihood function becomes 

 2
1021 ,,...,,;,...,,  knYYYL
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taking the natural logarithm of the likelihood function 
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and thereafter the partial derivatives with respect to 
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setting 0
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to zero and rearranging 
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it therefore follows subsequently, 
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Combining equations (3), (4) and (5) called 

normal system of linear equations 
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which can be represented in matrix as 
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rewritten in matrix form as 

XXYX TT 
                       (6) 

Considering equation (1) 
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  XY  
   XY 
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Resolving equations (6) and (7) from methods of 
maximum likelihood and least squares, the estimator 
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where 
k  is the number of estimated parameters excluding 
the regression intercept and n  is the number of 
observations. 

 
3. Analysis and Results 

4321 ,,, XXXX
are considered in the multiple 

linear regression model 

ikiiii XXXXY   443322110

or 

  443322110 XXXXYi  
with closely related variables of interest that are 
positively correlated with one another as its data were 
simulated through economic rationale in R (a 
statistical programming software). 
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3.1. Regression Model of the Untransformed 
Variables 
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Figure 1:  Matrix Plot of the Untransformed Variables 

of the Regression Model. 
 

Consider the linear model 

443322110 XXXXY i    
with estimated model 

4321 3090.22374.37389.00467.24813.200 XXXXY 


 
Analysis of Variance Table 
Response: Y 

 

--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 

MSE = 4.7838e+05 
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Figure 2: Error Diagnostic Analysis of the 

Untransformed Regression Model. 
 
 
 
 
 

3.2. Regression Model of the Logarithm (Base 
Exponent) Transformed Variables 
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Figure 3: Matrix Plot of the Logarithm (Base 

Exponent) Transformed Variables of the 
Regression Model. 

 
Consider the linear model 

443322110 logloglogloglog XXXXY eeeee  

with estimated model 

4321 log2159.0log3413.0log0946.0log364.09840.1 XXXXY eeee 


Analysis of Variance Table 
Response: LOGY 

 

 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
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MSE = 0.005 
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Figure 4: Error Diagnostic Analysis of the 

Transformed Logarithm (Base Exponent) 
Regression Model. 
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3.3. Regression Model of the Logarithm (Base 10) 
Transformed Variables 
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Figure 5: Matrix Plot of the Logarithm (Base 10) 

Transformed Variables of the Regression 
Model. 

Consider the linear model 

4104310321021101010 logloglogloglog XXXXY    
with estimated model 

410310210110 log2159.0log3413.0log0946.0log364.08617.0 XXXXY 


Analysis of Variance Table 
Response: LOGY 
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Figure 6: Error Diagnostic Analysis of the 

Transformed Logarithm (Base 10) 
Regression Model. 

3.4. Regression Model of the Logarithm (Base 7) 
Transformed Variables 
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Figure 7: Matrix Plot of the Logarithm (Base 7) 

Transformed Variables of the Regression 
Model. 

 

Consider the linear model 

47437327217107 logloglogloglog XXXXY  

with estimated model 

47372717 log2159.0log3413.0log0946.0log364.08617.0 XXXXY 


Analysis of Variance Table 
Response: LOGY 
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Figure 8: Error Diagnostic Analysis of the 

Transformed Logarithm (Base 7) 
Regression Model. 

 
3.5. Regression Model of the Logarithm (Base 5) 

Transformed Variables 
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Figure 9: Matrix Plot of the Logarithm (Base 5) 

Transformed Variables of the Regression 
Model. 

 
Consider the linear model 

45435325215105 logloglogloglog XXXXY  

with estimated model 

45352515 log2159.0log3413.0log0946.0log3641.08623.2 XXXXY 


Analysis of Variance Table 
Response: LOGY 
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--- 
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MSE = 0.01 
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Figure 10: Error Diagnostic Analysis of the 

Transformed Logarithm (Base 5) 
Regression Model. 

 
3.6. Regression Model of the Logarithm (Base 2) 

Transformed Variables 
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Figure 11: Matrix Plot of the Logarithm (Base 2) 

Transformed Variables of the Regression 
Model. 

Consider the linear model 

42432322212102 logloglogloglog XXXXY  

with the estimated model 

42322212 log2159.0log3413.0log0946.0log3641.08623.2 XXXXY 


Analysis of Variance Table 
Response: LOGY 

 

 
--- 
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8 10 12 14 16

-0.
2

0.0
0.2

Fitted values

Re
sid

ua
ls

Residuals vs Fitted

8

20

11

-2 -1 0 1 2

-2
-1

0
1

2

Theoretical Quantiles

St
an

da
rdi

ze
d r

es
idu

als

Normal Q-Q

8

20

11

8 10 12 14 16

0.0
0.5

1.0
1.5

Fitted values

St
an

da
rdi

ze
d r

es
idu

als

Scale-Location
8 20

11

0.00 0.10 0.20 0.30

-2
-1

0
1

2

Leverage

St
an

da
rdi

ze
d r

es
idu

als

Cook's distance 0.5

0.5

Residuals vs Leverage

20

8

1

 
Figure 12: Error Diagnostic Analysis of the 

Transformed Logarithm (Base 2) 
Regression Model. 

 
3.7. Regression Model of the Square Root 

Transformed Variables 
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Figure 13: Matrix Plot of the Square Root 

Transformed Variables of the Regression 
Model. 

Consider the linear model 

443322110 XXXXY  
 

with the estimated model 

4321 6995.09734.03251.08750.01987.1 XXXXY 


 
Analysis of Variance Table 
Response: SQRTY 

 

 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 

MSE = 5 
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Figure 14: Error Diagnostic Analysis of the Square 

Root Transformation Regression Model. 
 
3.8. Regression Model of the Reciprocal Transformed 
Variables 
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Figure 15: Matrix Plot of the Reciprocal 

Transformed Variables of the Regression 
Model 

Consider the linear model. 
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Analysis of Variance Table 
Response: RECIY 
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Figure 16: Error Diagnostic Analysis of the 

Reciprocal Transformation Regression 
Model. 

  
3.9. Regression Model of the Inverse Square Root 

Transformed Variables 
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Figure 17: Matrix Plot of the Inverse Square Root 

Transformed Variables of the Regression 
Model. 

 
Consider the linear model 
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with estimated model 
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Analysis of Variance Table 
Response: INSQRTY 

 

 
--- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 
’ 1 

MSE = 0.0000016 
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Figure 18: Error Diagnostic Analysis of the Inverse 

Square Root Transformation Regression 
Model. 

 
3.10. Regression Model of the Inverse Square 

Transformed Variables 
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Figure 19: Matrix Plot of the Inverse Square 

Transformed Variables of the Regression 
Model. 

 
Consider the linear model 
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Analysis of Variance Table 
Response: INSQY 

 

 
 

--- 
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Figure 20: Error Diagnostic Analysis of the Inverse 

Square Transformation Regression 
Model. 

 
3.11. Regression Model of the Sine Transformed 

Variables 
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Figure 21: Matrix Plot of the Sine Transformed 

Variables of the Regression Model. 
 
Consider the linear model 

443322110 sinsinsinsinsin XXXXY  

with estimated model 

4321 sin0845.0sin2975.0sin0033.0sin1765.02819.0 XXXXY 


Analysis of Variance Table 
Response: SINEY 

 

 
 

MSE = 0.53935 
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Figure 22: Error Diagnostic Analysis of the Sine 

Transformation Regression Model. 
 
3.12. Regression Model of the Deviate Transformed 

Variables 
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Figure 23: Matrix Plot of the Deviate Transformed 

Variables of the Regression Model. 
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Analysis of Variance Table 
Response: DEVY 
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Figure 24: Error Diagnostic Analysis of the Deviate 

Transformation Regression Model. 
 

4. Discussion of Results 
The comparison of transformed and 

untransformed variables of a linear regression model 
was examined through various matrix plots, mean 
square errors and the normal quantile-quantile plots. 

Figures (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 
23) reflected the relationship among individual 
variables of interest of the model for both transformed 
and untransformed as they all supported fitting a 
linear regression model through their scatter plots. 
However, the linear regression models fitted for the 

logarithm transformations of bases ( 10, 7, 5 & 2) 
resulted to same regression coefficients except for 
their regression intercepts that differed in values for 
base exponent, same for higher bases of ten & seven 
and lower bases of five & two whereas for 
untransformed, square root, reciprocal, inverse square 
root, inverse square, sine and deviate transformations 
were found to be negative in value as their regression 
coefficients were not in any form related to each other 
unlike that of logarithm transformations. 

The essence of this research work as to which 
transformation is adjudged to fit a better linear 
regression model was deduced from the matrix plot of 
scatter diagram, mean square error and normal 
quantile-quantile plot for logarithm of bases (10, 7, 5 
and 2), inverse square root, reciprocal and inverse 
square transformations. Results reflected logarithm 
(bases 7 and 10), reciprocal, inverse square root and 
inverse square transformations to be having 
comparatively small mean square errors with values 
ranging from 7.0000e-13 to 0.001 for figures (6, 8, 16, 
18 and 20). It is therefore inferred that for economic 
variables of this interest in which they are closely 
related, the transformations with minimum mean 
square error should be preferred over others but 
further consultations from the transformation error 
diagnostic analyses in figures (6, 8, 16, 18 and 20) 
suggested that logarithmic transformations of bases (7 
and 10) should be recognized over others as mean 
square error should not be the only minimum criteria 
for identifying best fitted transformation of variables 
for linear regression model. It was also discovered 
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that deviate transformation does not in any way 
differed from the untransformed model as both mean 
square errors and error diagnostic analyses in figures 
(2 and 24) were the same. 
 
5. Conclusion 

Transformations of linear regression model was 
investigated in this study to determine the 
transformation which can be recommended among 
logarithm, square root, reciprocal, inverse square root, 
inverse square, sine and deviate when closely related 
economic variables are involved. Findings revealed 
that all logarithmic transformations of different bases 
can be engaged as their mean square errors were 
relatively small compared to others except for inverse 
square root, reciprocal and inverse square 
transformations which also displaced higher sense of 
belonging in the transformations of linear regression 
model with its mean square errors being extremely 
very small but unfavoured by other regression model 
error diagnostic measures. 

Transformation of variables for linear regression 
model should be encouraged among users of closely 
related economic variables considering its importance 
and usefulness in regression analysis but the choice of 
transformations to be considered should be guided by 
literatures and further diagnostics on linear models. 
Therefore, in line with this study, it is advisable to 
work with logarithmic transformation of base 10 
considering the fact that all the closely related 
economic variables involved are positively correlated 
which is in line with the conclusion of (Cleveland, 
1984). 

We therefore recommended logarithmic 
transformations as being appropriate and suitable 
especially of base ten for econometricians, 
statisticians and other users of economic variables 
with incessant relationship over other transformations 
simply for the fact that the results of significance for 
untransformed linear regression model remained 
unaltered. 
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