
 

 1

Temperature Control of a Steam Condenser using NARMA-L2 Controller 
 

Mustefa Jibril, Messay Tadese, Nuriye Hassen 

 
Msc, School of Electrical & Computer Engineering, Dire Dawa Institute of Technology, Dire Dawa, Ethiopia 

mustefa.jibril@ddu.edu.et 
 
Abstract: This paper investigates the outlet temperature control for the design of steam condenser. The comparison 
has been made for a step drop in the steam condenser temperature set point using MATLAB/Simulink environment 
for the steam condenser with NARMA-L2 using Levenberg-Marquardt Algorithm and NARMA-L2 using Resilient 
Backpropagation Algorithm controllers. The steam condenser with NARMA-L2 using Levenberg-Marquardt 
Algorithm controller presented excellent and superior dynamic performance in response to the temperature drop in 
settling time. The overall simulation results demonstrated that the steam condenser with NARMA-L2 using 
Levenberg-Marquardt Algorithm controller can be an efficient alternative to the steam condenser with NARMA-L2 
using Resilient Backpropagation Algorithm controller. 
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1. Introduction 

A steam condenser is a closed vessel in which 
steam is condensed by abstracting the heat by 
cooling it with water and where the pressure is 
maintained below atmospheric pressure. The 
condensed steam is known as condensate. The 
efficiency of the steam power plant is increased by 
the use of a condenser. The steam condenser is an 
essential component of all modern steam power 
plants. 

The steam condenser receives exhaust steam 
from one end and gets in contact with the cooling 
water flowed within it form the cooling tower. 

As the low-pressure steam comes in contact 
with the cooling water, it condenses and turns into 
water. it is attached to the air extraction pump and 
condensation extraction pump. after condensation of 
steam, the condensate is pumped into the hot well by 
the help of condensate extraction pump. 

The air extraction pump extracts air from the 
condenser and produces a vacuum inside it. the 
vacuum produced helps in the circulation of cooling 
water and the flow of condensate downstream. 

The condenser is one of the critical kinds of 
system in thermal electricity plant, nuclear electricity 
plants, and marine system plant. The reliability of 
condenser running at once impacts the protection and 
financial operation of the entire energy plant or 
power gadget. A steam condenser is a chunk of 
equipment that turns steam into water. Many steam-
based systems use a  

circuit of water to maximize their efficiency. 
Water is heated into steam, the steam offers 
motivation for  

 
a technique, a steam condenser turns it back 

into water, and the cycle begins again. The failure of 
the condenser may additionally cause the boiler or 
steam turbine unit to overheat, which endangers the 
safety of the whole producing unit or electricity 
plant. 

The condenser as a “lower source of heat” 
performs a special position in an energy plant, due to 
the fact the parameters of its work have a significant 
impact at the performance of the installation. 
Therefore, it's far critical to recognize the condenser 
operating parameters during both design and 
operation. For this purpose, mathematical models 
describing the paintings of the condenser in modified 
situations are created. 

Therefore, through the computer simulation 
experiments, the status quo of the dynamic version 
and knowledge the dynamic characteristics of the 
condenser have a wonderful significance on 
improving the protection and monetary operation 
degree of the steam condenser. 
 
2. Modelling of Steam Condenser 

The dynamic modelling of Steam Condenser 
(SC) shall be established using mass and energy 
balance condensation assumption. Therefore, 
according to the energy balance of the system, the 
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heat of the steam will be equal to heat transferred to 
cooling water. 

 

 1hd mfrC R   

 
Figure 1 Steam condenser 

 

Where, hdC  = heat duty of the condenser in [KW], 

mfrR  = flow rate of the mass in [kg/s], and     = 

latent heat of steam. 
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Where, tcQ =heat transfer coefficient (overall) /heat 

transfer area. cwoT = cooling water outlet 

temperature, cdT = condensation temperature, icwT
=inlet temperature of cooling water. 
This yields to energy balance equation as 
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cwoT =flow rate of cooling water [kg/s], cwmM  = 

holdup (cooling water) [kg], whQ  =cooling water 

heat capacity [KJ/kgK].  
Based on the constant volume assumption, 

mass balance equation can be derived. The ideal gas 
equation is 

   4c c cd
rs mfr

c

dP G T
F R

dt V
   

cP =condenser pressure [KPa], cG =gas constant cV = 

volume of condenser [m3], rsF  = flow rate of steam 

[kg/s]. 
While the temperature and pressure is 

approximated linearly as 

 5CD cT P    

Equation 3 and 4 are dynamic equations and 
system have 7 parameters and 8 variables. The 
variables and parameters with their values for a 
steam condenser are shown in Table 1 and Table 2 
respectively. 
 

Table 1 Steam condenser variables 
Variable Value and unit 

rsF
 

7 kg/s 

mfrR
 

7 kg/s 

cwfR
 

127.1 kg/s 

cP
 

90 kPa 

cwoT
 

80 0C 

icwT
 

78 0C 

cdT
 

106 0C 

hdC
 

9862 kW 

 
Table 2 Steam condenser parameters 

Parameters Value and unit 

cG
 

0.3 kJ/(kgK) 

cV
 

8 m3 

  2455.65 kJ/kg 

tcQ
 

456 kW/K 

cwmM
 

8500 kg 

whQ
 

6.4 kJ/(kgK) 

1  
0.006 

2  
0.00045 

  
0.86 K/kPa 

  78 C 
 
 
3. Proposed Controllers Design 
3.1 Design of NARMA-L2 Controller 

The neuro controller described on this phase is 
cited through two different names: response 
linearization control and NARMA-L2 manipulate. It 
is known as comments linearization when the plant 
shape has a specific form (associate form). It is 
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known as NARMA-L2 manipulate while the 
fortification mold may be approximated by using the 
same form. The vital principle of this type of control 
is to convert nonlinear design system into linear 
dynamics with the aid of cancelling the 
nonlinearities. This phase starts off evolved with the 
aid of submitting the associate system form and 
presentation how you may use a neural community to 
become aware of this model. Then it describes how 
the identified neural network model may be used to 
broaden a controller. 

 
3.1.1 Identification of the NARMA-L2 Model:  

The first step in the use of feedback 
linearization (or NARMA-L2) manipulate is to 
identify the design to be controlled. You train a 
neural network to represent the forward dynamics of 
the system. 

The first step is to pick out a styles 
association to use. One standard pattern this is used 
to symbolize fashionable discrete-time nonlinear 
system is the nonlinear autoregressive-moving 
average (NARMA) model: 
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 Where u(k) is the system input, and y(k) is the 
system output. For the identification section, you can 
teach a neural network to approximate the nonlinear 
function N. If you want the system output to follow 
some reference trajectory y (k + d) = yr (k + d) the 
subsequent step is to expand a nonlinear controller of 
the form: 
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The trouble with the usage of this controller 
is that in case you need to teach a neural network to 
create the characteristic G to minimize mean square 
blunders, you need to apply dynamic returned 
propagation. This can be pretty sluggish. One answer 
is to apply approximate models to symbolize the 
system. The controller used on this section is based 
totally at the NARMA-L2 approximate model:  
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This model is in associate shape, wherein 
the next controller input u(k) is not contained in the 
nonlinearity. The gain of this form is that you could 
resolve for the control input that causes the system 
output to comply with the reference y (k + d) = yr (k + 
d). The resulting controller would have the form 
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Using this equation immediately can motive 
awareness problems, due to the fact you ought to 
determine the control input u(k) primarily based on 
the output at the same time, y(k). So, rather, use the 
model 
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Where d ≥ 2. Figure 2 shows the structure of a neural 
network representation 

 
Figure 2. The structure of a neural network 

representation. 
 

Using the NARMA-L2 model, you can 
obtain the controller 
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Which is realizable for d ≥ 2. Figure 3 shows the 
block diagram of the NARMA-L2 controller. 
 

 
Figure 3. Block diagram of the NARMA-L2 

controller 
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This controller can be implemented with the 
formerly diagnosed NARMA-L2 plant model, as 
shown in Figure 4 below. 

 
Figure 4. Previously identified NARMA-L2 plant 

model 
Table 3 illustrates the network architecture, training 
data and training parameters of the proposed 
controllers. 

 
Table 3 Neural network Parameters 

Network Architecture 
Size of hidden lay

er 
6 Delayed plant input 2 

Sample interval(s
ec) 

1 Delayed plant outpu
t 

3 

Training Data 
Training sample 10

0 
Maximum Plant out

put 
3 

Maximum Plant i
nput 

1 Minimum Plant out
put 

1 

Minimum Plant in
put 

1 Max interval value (
sec) 

3 

Min interval value (sec) 1.5 
Training Parameters 

Training Epochs 10
0 

 
3.2 Levenberg-Marquardt Algorithm 

Like the quasi-Newton methods, 
the Levenberg-Marquardt algorithm was designed to 
approach second-order training speed without having 
to compute the Hessian matrix. When the 
performance function has the form of a sum of 
squares (as is typical in training feedforward 
networks), then the Hessian matrix can be 
approximated as 

 12TH J J  

and the gradient can be computed as 

 13Tg J e  

where J is the Jacobian matrix that contains first 
derivatives of the network errors with respect to the 

weights and biases, and e is a vector of network 
errors. The Jacobian matrix can be computed through 
a standard backpropagation technique that is much 
less complex than computing the Hessian matrix. 
The Levenberg-Marquardt algorithm uses this 
approximation to the Hessian matrix in the following 
Newton-like update: 

 
1

1 14T T
k kx x J J I J e




      

When the scalar µ is zero, this is just Newton's 
method, using the approximate Hessian matrix. 
When µ is large, this becomes gradient descent with 
a small step size. Newton's method is faster and more 
accurate near an error minimum, so the aim is to shift 
toward Newton's method as quickly as possible. 
Thus, µ is decreased after each successful step 
(reduction in performance function) and is increased 
only when a tentative step would increase the 
performance function. In this way, the performance 
function is always reduced at each iteration of the 
algorithm.  
 
3.3 Resilient Backpropagation Algorithm 

Multilayer networks typically use sigmoid 
transfer functions in the hidden layers. These 
functions are often called "squashing" functions, 
because they compress an infinite input range into a 
finite output range. Sigmoid functions are 
characterized by the fact that their slopes must 
approach zero as the input gets large. This causes a 
problem when you use steepest descent to train a 
multilayer network with sigmoid functions, because 
the gradient can have a very small magnitude and, 
therefore, cause small changes in the weights and 
biases, even though the weights and biases are far 
from their optimal values. The purpose of the 
resilient backpropagation (Rprop) training algorithm 
is to eliminate these harmful effects of the 
magnitudes of the partial derivatives. Only the sign 
of the derivative can determine the direction of the 
weight update; the magnitude of the derivative has 
no effect on the weight update. The size of the 
weight change is determined by a separate update 
value.  
 
4. Result and Discussion 

The simulations of the steam condenser with the 
proposed controllers will present in this section. The 
Simulink model of the steam condenser with 
NARMA-L2 using Levenberg-Marquardt Algorithm 
and NARMA-L2 using Resilient Backpropagation 
Algorithm controllers is shown in Figure 5 below. 
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Figure 5 Simulink model of the steam condenser 

 
4.1 Simulation of the cooling water outlet 
temperature for a step Drop in Temperature 

The Simulation output of the cooling water 
outlet temperature for a step drop in temperature for 
the steam condenser with NARMA-L2 using 
Levenberg-Marquardt Algorithm and NARMA-L2 
using Resilient Backpropagation Algorithm 
controllers is shown in Figure 6 below. 

 
Figure 6 Simulation output of the cooling water 
outlet temperature for a step drop in temperature 

 
The simulation above shows that the steam 

condenser with NARMA-L2 using Resilient Back 
propagation Algorithm controller temperature drops 
with an oscillation with a big settling time as 
compared to the steam condenser with NARMA-L2 
using Levenberg-Marquardt Algorithm controller. 
 
5. Conclusion 

In this paper, the design of steam condenser 
condensate water temperature control has been done 
using MATLAB/Simulink software successfully. 
Comparison of the steam condenser with NARMA-
L2 using Levenberg-Marquardt Algorithm and 
NARMA-L2 using Resilient Backpropagation 
Algorithm controllers for the control target cooling 
water outlet temperature using a step drop in 
temperature set point. The simulation results prove 
that the steam condenser with NARMA-L2 using 

Levenberg-Marquardt Algorithm controller shows a 
good response in improving the response of the 
control targets effectively with best settling time than 
the steam condenser with NARMA-L2 using 
Resilient Backpropagation Algorithm controller. 
Finally, the comparison and simulation results prove 
the effectiveness of the presented steam condenser 
with NARMA-L2 using Levenberg-Marquardt 
Algorithm controller. 
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