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Abstract: The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric 
instability (API) of electrostatic waves in a magnetized plane waveguides subjected to an intense high frequency 
(HF) electric field. It is shown that allowance for the spatial nonuniformity leads to 1) localization of unstable waves 
in a finite region of a plasma volume, 2) increases in the threshold value of the pump wave amplitude above which 
parametric amplification occurs and 3) decreases in the value of the growth rate of unstable waves. 
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1. Introduction 

The parametric interaction of an external HF 
electric field with an electrostatic surface wave in 
anisotropic nonuniform plasma has been previously 
investigated using a special method based on the 
separation of variables (Demchenko and Omelchenko, 
1976). The method makes it possible to separate the 
problem into two parts. The “dynamical” (temporal) 
part describes the parametric excitation of waves and 
corresponding equations within the renormalization of 
natural (eigen) frequencies coincides with equations 
for parametrically unstable waves in uniform plasma 
(Aliev and Silin, (1965) and Silin, (1965)). Natural 
frequencies of surface waves and spatial distribution 
of the self-consistent electric field amplitude are 
determined from the solution of a boundary-value 
problem (“spatial” part) taking into account specific 
spatial distribution of plasma density. The proposed 
approach (“separation method”) is significantly 
simpler than the method previously used in the theory 
of parametric resonance in a nonuniform plasma (e.g., 
ref. Kaw, Kruer, Liu and Nishikawa, (1976) and 
references therein). Therefore, it is of special interest 
to apply the separation method to solve different 
problems involving parametric excitation of 
electrostatic waves in bounded nonuniform plasma. 

It is known that (e.g. Perkins and Flick, (1971)) 
the spatial nonuniformity of plasma density may lead 
to localization of a parametrically unstable in a finite 
region of a plasma volume. This suggests that 
instability has assumed an absolute character. From an 
experimental point of view, it is quite important to 

know whether a given parametric instability is 
absolute or convective. This is so essential because 
the nature of instability determines the mechanism of 
their saturation. The convective instability reaches 
saturation at a comparatively low level, due to 
convection of energy of the unstable waves away from 
the resonance region. The absolute instability 
saturates at a higher level of energy under the action 
of various nonlinear effects. From this point of view, 
an absolute parametric instability (API) play a crucial 
role in the process of the energy transfer from the 
electromagnetic radiation to the plasma and may have 
important consequences for experiments on RF 
plasma heating in tokamaks and for laser fusion 
(Rosenbluth, (1972), Piliya, (1973), Pesme, Javal and 
Pellat, (1973), Silin and Starodub, (1974), White, 
Kaw, Pesme, Rosenbluth, Javal, Huff and Varma, 
(1974), and Mourou, Tajima and Bulonov, (2006)). 

In ref. (Demchenko and Omelchenko, 1976) the 
problem of parametric excitation of natural modes of 
semi-infinite plasma (surface waves) was analyzed as 
an initial value problem. In other words, surface 
waves are excited due to an initial perturbation at the 
boundary and a dispersion equation determines the 

complex frequency   as a function of the real wave 

number k . It is of practical interest to use the 
separation method described in (Demchenko and 
Omelchenko, 1976) for the solution of an eigen-values 

problems when the wave number k  is found as a 

function of the real frequency . This means that one 
has to treat a forced oscillations excited in a plasma by 
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an external source (generator) with a fixed frequency 

g  (for more details see e.g., Demchenko and Zayed, 
1972), where the initial value problem for the problem 
of surface wave transformation at the plasma 
resonance in a transition layer). 

Demchenko et al. (1998) have reported an 
analysis of the effect of spatial plasma nonuniformity 
on parametric instability of electrostatic waves in a 
magnetized cylindrical waveguides subjected to an 
intense HF electric field. 

A method is expounded in this paper which 
permits reducing the problem of absolute parametric 
instability excited by a monochromatic pumping field 
of arbitrary amplitude in nonuniform magneto active 
plasma to the problem of parametric excitation of 
spatial oscillations in uniform isotropic plasma. 
Below, we will discuss the parametric excitation of 
low-frequency waves whose dispersion is completely 
determined by a high-frequency field, in a strong 
magnetic field i.e., here, we shall apply the method of 
ref. (Demchenko and Omelchenko, 1976) to 

investigate the API in a D1  nonuniform plasma 
waveguide subjected to an intense HF electric field as 
an eigen-value problem. 

Using the separation method, we investigate the 
API in bounded nonuniform relativistic plasma under 
the effect of pump field and static magnetic field. The 

pump field 
)(sin 00 tEEP 




 and the static 

magnetic field 0B


 are both directed along the 
z axis. Assuming the intensity of the magnetic field 

to be strong enough 
 


 Pc 

, the motion of 
plasma particles are considered to be confined along 

z axis only. We are going to study API in D1  
nonuniform bounded plasma. 
 
2. Separation method in the problem of API in 

a D1  nonuniform bounded plasma 
Let us suppose that plane waveguide is filled by 

nonuniform plasma 
),);((

00
iexnn   . A 

uniform strong static magnetic field 

)(0 
 PcB 



 and a HF electric field 

)(sin 00 tEEP 



 are directed along the z  axis. 

We choose the electric field of an ordinary wave as an 
HF pump field. The equilibrium particles velocity 

),0,0(  uu


 is determined by the following 
expression: 
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Representing the perturbations of velocity 

),0,0(   VV


, density and electrical potential   
in the form  

)exp(~),,( ikznV  


. 
 

The initial system of equations consists of the 
two fluid equations in combination of the Poisson 
equation: 
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Where, n
 and V



 are the density and velocity of 

particles of species  , and   is the potential self-
consistent electric field.  
Suppose 
that
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It means that particles are "frozen" and could not 

move across the magnetic field
0

yx
VV  

. 
From linearized equation (2) we find 
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The continuity equation (3) reduces to  
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Introducing new variable 
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set of equations (5) and (6) can be rewritten as 
following 
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Where;
)(ˆ

0

2
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. 
The Poisson's equation takes the form 
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Assuming 
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 and separating variables in equations (7) and (8), we 
have 
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Where; 
22 /1),( ppx

eP 
 and 

p
is the 

separation constant. Set of equations (9) describe 
"temporal" (dynamical) part of the problem. 
Comparing the derived equations with the system 
describing volumetric oscillations in a uniform plasma     
(Pesme, Javal and Pellat, (1973), Silin and Starodub, 
(1974)), we find that the presence of plasma 
nonuniformity results in a renormalization of the 
natural plasma frequencies 

2222 )/(, pmmp iePP ie
 

. This fact enables 
us to use the method developed in (Silin, 1965) to 
solve the system of equations with periodical 
coefficients (9). Equation (10) corresponds to the 
"spatial" (stationary) part of the problem. If the profile 
of plasma density and boundary conditions are 
specified, solution of equation (10) gives us the 

needed value of constant
p

. The distinguishing 
feature of the equation (10) is that the amplitude of 
HF electric field is not part of it. 
 
3. Solution of the spatial equation (10) 

We will consider API in nonuniform plasma in 
which the density distribution is determined by the 

relation 
)/1( 22

0 Lxnn 
[14] where L  is the 

characteristic scale of nonuniformity. In this case 
equation (10) takes the form 
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Equation (10) yields 
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The solution of equation (12), which describes trapped 

oscillations, is possible for 0A )0( 0 
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Where;
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substitution 
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We obtain the equation 
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for the function )( . The solutions of this equation 
are Hermite polynomials (Richards, 2009): 
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satisfying the localizability condition (the width of the 
region of localizability of the oscillations is assumed 
to be significantly less than the width of the plasma 
layer) only for integral positive values of the number 
n  (including zero). This fact permits considering 
equation (14) as an analog of the quantization rule, 
which serves to determine the possible values of the 

quantity
p

. Thus, the solution of equation (13) takes 
the form 
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From equation (14), we get 
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Thus from equation (18), we get 
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At 0
, PpL 

 (plasma waves in uniform 
plasma). Equation (18), takes the form 
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This equation is the same one in a uniform 
plasma case (Demchenko and Omelchenko, 1976); 
i.e., the nonuniform plasma has no effect on the space 
part of the problem. 
 
 
4. Solution of the "Temporal" (Time-Dependent) 
equations 

Following the procedure, developed in (Aliev 
and Silin, (1965) and Silin, (1965)), from equations 
(9) we can derive dispersion equation of low-

frequency oscillations 
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. 
Under the parametric resonance condition 
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that the resonance "mismatch" n  satisfies the 

inequalities 
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. From equation 
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plasma oscillations 
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where: 
)(aJ n  is the Bessel function. Expression (22) 

yields an unstable solution in two cases: 
 
 

a) Periodic instability 
)0(  n  

 

In this case
0Im   per , i.e., small 

perturbations in plasma grow exponentially in time, if 
the following condition is satisfied 
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The growth rate of instability is determined by the 
expression 
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The maximum value of the growth rate per
 reached 

at 
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Substituting (25) into (24) we find 
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b) A periodic instability 
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In this case expressions (22) describe the growth 

of oscillations when the minus sign is taken. We have 
then the following expression for the growth rate 
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The maximum of the growth rate 
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is attained under the condition 
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The main feature of equations (24) – (26) is in the 

existence of a separation constant 
p

 which enables 
us to account for the plasma nonuniformity. 

 

At 1  expressions (26) and (28) 
become 
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Where 
U

per
max

 and 
U

aper
max

 are the values of the 
growth rates of periodical and a periodical API at 
vanishing density gradients. 
 

From equation (24) we conclude that, the 
threshold value of the HF field amplitude in case of 
periodic instability is determined by the relation 
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At small amplitudes of the pumping 

wave 1,1  na , from equation (31) we get 
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It follows from expressions (30) and (32) that 
nonuniformity of the plasma density results in a 
decrease of the growth rate of absolutely unstable 
oscillations and an increase in the threshold value of 
the pump wave amplitude in comparison with the case 
of a uniform plasma waveguide. 

It should be noted that our approach is 
significantly simpler than the method ordinarily 
employed in theory of a parametric excitation of 
waves in nonuniform plasma. Therefore, it is of 
practical interest to apply the method to solve 
different problems in parametric resonance in 
nonuniform plasma taking into account finite plasma 
temperature and nonuniformities of the HF electric 
field and static magnetic field. 
 
 
5. Results and Conclusions 

We study in this paper the effect of D1  
plasma nonuniformity on absolute parametric 
instability (API) of electrostatic waves in magnetized 
pump plasma is in plane geometry by using the 
separation method, 

It follows from equations (20), (26), (28), (31) 
and (32) that taking account of nonuniformity of 
plasma density results in decrease of the maximum 
values of the oscillation build up increments and an 
increase in the threshold value of the electric field 
amplitude of the pumping wave in comparison with 
the case of uniform plasma. These results are 

consistent with the results of Refs. Perkins and Flick, 
(1971) and Demchenko et al (1976). 

Equation (20) is the same equation in uniform 
plasma case Perkins and Flick, (1971) and 
Demchenko et al (1976); i.e., the nonuniformity 
plasma has no effect on the space part of the problem. 
The main feature of equation (9) enables us to account 
for the plasma nonuniformity. 

From expressions (26) and (29), we conclude 
that the growth rate of periodic API decreases in 
nonuniform plasma more than in uniform plasma 
which is considered by .Demchenko et al (1976). 

It should be noted that our approached is 
significantly simpler than the method ordinary 
employed in theory of a parametric excitation of 
waves in nonuniform plasma. Therefore it is of 
practical interest to apply the method to solve 
different problems in parametric resonance in 
nonuniform plasma taking into account relativistic 
electron plasma and nonuniformities of the HF 
electric field and static magnetic field. 
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