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ABSTRACT: The flow of visco-elastic fluid under steady pressure gradient in a region bounded by two parallel 
porous plates, it is assumed that at one plate fluid is injected with a certain constant velocity and sucked off with 
same velocity at the other; we also assumed a variable viscosity. The non linear dimensionless equation is then 
solved numerically by asymptotic expansion for fixed injection Reynolds number and suction parameter. The effects 
of visco-elastic K and the viscosity variation parameters on the velocity field are presented and discussed. 
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INTODUCTION 
 The non Newtonian flow of blood through the 
artery is a source of major concern to all and sundry 
in the medical field because of the high mortality rate 
especially if it is within the coronary network. In an 
earlier work, (Singh, 1983), had applied the visco-
elastic model to study blood flow in the artery by 
assuming a constant blood viscosity however for non-
Newtonian blood flow we observe that changes in 
viscosity is highly significant. Flow of blood with 
variable viscosity had been studied by [2-5] under 
different flow conditions. 

 The objective of this paper is to study the steady 
non-Newtonian blood flow using the Maxwell 
viscoelastic model. But the modification we are 
proposing is that of variable viscosity by (Makinde, 
2008) 
 The paper is organized in this form; in section 1 
we give brief introduction and the statement of 
problem, in section 2 of the work, the problem is 
formulated and non-dimensionalized, in section 3, the 
problem is solved and numerical results are presented 
are discussed. While section 4 gives some concluding 
remarks.

 
 
MATHEMATICAL ANALYSIS 
We consider the visco-elastic fluid model given by (Singh, 1983) whose constitutive equation is characterized by  
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ij -is the stress tensor,  -is the relaxation,  -is the dynamic viscosity, the rate of strain tensor. ike
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The continuity equation for the incompressible unsteady flow of fluid of density  is  

    0, i
iv        (2.4) 

Let us assume that v is every where negative that is 0vv  (constant) and u=u(y,t) and then the momentum 

equation gives  
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Equation (1) gives, 
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We assume a variable viscosity (Makinde, 2008) 

   21 yey         (2.7) 

Where 
 is the dynamic viscosity, u = velocity,   = density, p = pressure, x = co-ordinate in the direction of flow, y= 

coordinate across the flow, is the constant vertical velocity,  is the shear stress tensor 0v xy
 Substituting (6) in (5) we have 
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Now introducing the following dimensionless parameters 
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We obtain  
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Subject to initial and boundary conditions  
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3.1 STEADY STATE SOLUTION 
We assume that blood flow steadily therefore (2.10) reduces to 
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Subject to the boundary conditions 
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Let 10    therefore by asymptotic expansion, 

We take neglecting other terms    (3.1.3) 2
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Using mathematical version 6 we the solution of (3.3) is given as Appendix A, while the graphical results are figures 
1 and 2 
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Figure 1    Figure  2 
 
 
 In figure 1, we observed that as the viscosity 
variation parameter increase there is reduction in the 
flow velocity.   
 While in Fig. 2 the effect of increase in the 
relaxation time parameter is to increase the flow 
velocity this result is in agreement with (Singh, 1983; 
Akhtar et al, 2008) 
 
 
CONCLUDING REMARKS 
 We have studied the steady flow of Maxwell 
fluid at steady state from our result we observed that 
as relaxation time reduce the fluid shows Newtonian 
behaviour while velocity reduces with increase in 
viscosity. Possible application of this work is in the 
treatment and diagnosis of cardiovascular diseases 
and stenosis. The non-Newtonian flow using 
Maxwell model is still open for future research. 
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