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Introduction 

Pseudolinear functions were defined by (5) as functions which are both pseudoconvex and pseudoconcave.  
The following example illustrates the fact that if f and g are two pseudolinear functions with respect to same 
proportional function  , then f/g is not necessarily pseudolinear with respect to same proportional function p. 

 
Example 1 : The real valued functions f and g defined on ]0, 1[ by 

 f (x) (7x 3) / (2x 5)    

 g(x) (9x 4) / (2x 5)    

are pseudolinear with respect to same proportional function  p(x, u) (2u 5) / (2x 5)   . But the function 

f (x) / g(x) (7x 3) / (9x 4)    defined on ]0, 1[ is not pseudolinear with respect to proportional function p(x, 

u) because for x = 1/2, u = 1/4 

 f (x) / g(x) f (u) / g(u) p(x, u) (x u) (f (u) / g(u))    . 

The following result illustrates that f/g is, however, pseudolinear with respect to a different proportional function. 
 

Theorem 1 : If f and g are two pseudolinear functions defined on an open convex subset X of 
nR  with the same 

proportional function p(x, u) and g(x) > 0 for every x in X, then f/g is also pseudolinear on X with respect to 

proportional function p(x, u) p(x, u) g(u) / g(x) . 

Proof : Since f and g are pseudolinear functions with respect to same proportional function p it follows that for x, u 
in X 

 
Tf (x) f (u) p(x, u) (x u) f (u)     

 
Tg(x) g(u) p(x, u) (x u) g(u)     

It can be shown that 

       
Tp(x, u) (x u) (f (u) / g(u)) g(x)[(f (x) / g(x)) (f (u) / g(u))] / g(u)     

Thus, 

     
Tf (x) / g(x) f (u) / g(u) p(x, u) g(u)(x u) (f (u) / g(u)) / g(x)     

which implies that f/g is pseudolinear with respect to proportional function p(x, u) p(x, u) g(u) / g(x) . 

 
Remark 1 : In the example considered above, the function f/g is pseudolinear with respect to the proportional 
function 

 p(x, u) p(x, u) g(u) / g(x)    

  (9u 4) / (9x 4)    

The class of pseudolinear functions is generalized to a new class of functions called  -pseudolinear functions. Let 

f : X R , p : X X R  , 
n: X X R   , where X is an open subset of 

nR . 
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Definition 1 : The function f is said to be  -pseudolinear if there exist functions p(x, u) and (x, u) , such that, 

p(x, u) > 0 for x, u X  and 

 
Tf (x) f (u) p(x, u) (x, u) f (u)     

The following theorem follows on the lines of Theorem 1. 
 

Theorem 2 : If f and g are two  -pseudolinear functions defined on an open subset X of 
nR  with same 

proportional function p(x, u)  and g(x) 0  for every x in X, then f/g is  -pseudolinear on X with respect to 

new proportional function p(x, u) p(x, u) g(u) / g(x) . 

 The following theorems establish certain sufficient conditions for composite functions to be  -

pseudolinear. 

Theorem 3 :  Let 
n n: R R   be a surjective function with (x)  onto for each 

nx R  and 
n

if : R R, i 1, 2, ..., k   be pseudolinear functions with respect to proportional function ip , then the function 

n nh : R R  defined by 

 1 2 kh(x) (f ( (x)), f ( (x))......, f ( (x)))     

is  -pseudolinear. 

Proof : Let  
nx, u R . Let w (x), z (u)    . We have 

 i i i if ( (x)) f ( (u)) f (w) f (z)      

         
T

i ip (w, z) (w z) f (z)    

and if  is pseudolinear with respect to proportional function ip , i = 1, 2, …, k. Since (u)  is onto, the equation 

Tw z (u) (x, )     is solvable. Thus, we get 

 
T

i i i if ( (x)) f ( (u)) p (w, z) (x, u) (u) f (z)        

          
T

i ip (w, z) (x, u) (f ) (u)     

          = 
T

i ip ( (x), (u)) (x, u) (f )(u)      

      
T

i ip (x, u) (x, u) (f ) (u)     

where i ip (x, u) p ( (x), (u))   . Since each component of h is  -pseudolinear, it follows that h is  -

pseudolinear. 
 

Theorem 4 : Let 
ng : R R  be continuity differentiable  -pseudolinear with respect to proportional function q 

and f : R R  be pseudolinear with respect to proportional function p. Then (f g) (x)  is  -pseudolinear 

with respect to new proportional function. 

Proof : Let 
nx, u R . Let w g(x), z g(u)  . 

 f (g(x)) f (g(u)) f (w) f (z)    

         = p(w, z) (w z) f (z)        (1) 

as f is pseudolinear with respect to p. Also 

 w z g(x) g(u)    

  = 
Tq(x, u) (x, u) g(u)   

as g is  -pseudolinear with respect to q. Substituting the value of w z  in (1), we get 

 
Tf (g(x)) f (g(u)) p(w, z) q(x, u) (x, u) g(u) f (z)      

          
Tp(g(x), g(u)) q(x, u) (x, u) (f g) (u)     
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Tr (x, u) (x, u) (f g) (u)     

where r(x, u) p(g(x), g(u)) q(x, u) . Thus it follows that (f g) (x)  is  -pseudolinear with respect to r. 

 We now define second order pseudolinear twice differentiable functions. Let f : X R  be a twice 

differentiable function defined on a non-empty open subset X of 
nR . Let 

np : X X R , q : X X R    . 

 

Definition 2 : The function f is said to be second order pseudolinear at u X  with proportional function q if there 

exist functions p(x, u),  q(x, u) such that q(x, u) > 0 and for x X  

 
T 2 T 21

f (x) f (u) p f (u)p q(x, u)(x u) ( f (u) f (u)p)
2

         

 
Remark 2: Every second order pseudolinear function is both second order pseudoconvex and second order 
quasiconvex. 
 Second order  -pseudolinear functions are defined as an extension of  -pseudolinear functions and 

second order pseudolinear functions. Let 
n: X X R   . 

 

Definition 3 : The function f is said to be second order  -pseudolinear at u X  with proportional function q if 

there exist functions p(x, u), q(x, u)  and (x, u)  such that q(x, u) > 0 and for x X  

 
T 2 T 21

f (x) f (u) p f (u)p q(x, u) (x, u) ( f (u) f (u)p)
2

         

 
Conclusion 

In the above examples it is concluded that if 
f and g are two pseudolinear functions with respect to 
same proportional function  , then f/g is not 

necessarily pseudolinear with respect to same 
proportional function p. 
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