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Abstract: Under Lorentz transformation we obtain relativistic temperature transformation » where

% and T denote rest temperature and temperature moving with constant velocity u, respectively. PACS numbers:
07.20.Dt, 07. 20. Pe, 03. 30. +p.
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In the Universe there are two matters: (1) X u
observable subluminal matter called tardyon and (2) O=th” —=th™ —

unobservable superluminal matter called tachyon cT ¢ (5
which coexist in motion. Tachyon can be converted u
into tardyon, and vice versa. In this paper we study 1 -
tardyonic and tachyonic temperature transformations. chl = — sh=—"—
We first define a ring. uwY 1 uY
cT x . 1= c e
Z = =cT + jx, ,

where €2 U js the tardyonic velocity.
From (3) and (6) we obtain relativistic
temperature transformation

T =

J= [0 lj L
light velocity in vacuum, 1o . u 2
(1) can be written as Euler form 1= =
C
) 7
T

Z =cT,e”” = cT,(ch@+ jsho) (2)

x=ul,u 4 T

where represent the

tardyonic velocity and temperature, respectively, € is

where 0 and T represent tardyonic rest

where Ty is the tardyonic invariance, 0 temperature and temperature moving with constant
tardyonic hyperbolical angle. velocity, respectively.
From (1) and (2) we have If we replace temperature with heat, then we
cT = CTo Ch@, x=c To sh@ (3) obtain relativisticd Egeat transformation
0

d =
P e - Ty
From (3) we have 1= (cj
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where dQO and dQ represent tardyonic rest

heat and heat moving with velocity ¥ | respectively.
If we replace temperature with time, then we
obtain relativistic time transformation.

> 9

where fo and ! denote tardyonic rest time and
time moving with velocity ¥ | respectively.

If we replace temperature with mass then we
obtain relativistic mass transformation

M =

) aom

where 0 and M denote tardyonic rest mass
and mass moving with constant velocity ¥ |
respectively.

From above we arrive at a conclusion that
temperature, heat, time and mass have the same
relativistic transformation.

Using the morphism Jrz— )z , we have

jz=x+ jcT =X,¢”’ =X,(chf + jsh@)
an

where * U T, u and T denote the

. . . X,
tachyonic velocity and temperature, respectively, “°

is tachyonic invariance, 0 tachyonic hyperbolical

angle.
From (11) we have

X =X,chf, T =x,;sh0 P

%, =@}~ (cT)? 13

From (12) we have

=th' —th' <
u

X

where U Z Cig the tachyonic velocity.

Fig. 1. Tardyonic and tachyonic coexistence,
0<7,, 0<%,
Figure 1 shows the formulas (1) — (15) .

J 27 J%7 s that tardyon can be converted into
tachyon, but JPJE 2 s that tachyon can be

converted into tardyon. At the * ~ axis we define the
tachyonic length

X, = limuTl; =
u—>w
To—0 constant. (15>
7,-0

Since at rest the tachyonic Temperature
and ¥ =% we prove that tachyon is unobservable. In

the same way we obtain rest heat dQO -

t, = =0 .

0 , and rest mass 0 . Therefore tachyon is
unobservable. But tachyons exist in the Universe, for
example gravitons.

, rest time
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