
 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

9

Storing and Retrieving Images by Relational Data Bases vs Key-Value store

Ehsan Azizi Khadem1, Emad Fereshteh Nezhad2

1. MSc of Computer Engineering, Department of Computer Engineering, Lorestan University, Iran

2. MSc of Computer Engineering, Communications Regulatory Authority of I.R of Iran

emad_fereshtehnejad@yahoo.com

Abstract: Today, we implement very huge collections of data that should be stored in several storage devices. These

data collections consist of various types have different behavior. For this requirement, we use database systems.

Now, there are two main approaches for design database those are used more than others: Relational and NoSQL.

Relational databases are used for many years as main design pattern for data storage. But in 21th century, some

concepts like Web2 make problems for this approach. Increasing size and amount of data based on user defined

information and social networks with tremendous huge data sets lead database designers to NoSQL. NoSQL

databases handle horizontal scaling and support dynamic change of values. It is schemaless and allow designers to

construct various structures according to data objects. One of the challenges in data storage is storing and retrieving

images. In relational databases, we can only save name of image in table and must store image file in separate folder

out of our database on storage device and then retrieve it by matching name in table and name of file in folder. In

Key-Value store systems like Redis that is one of methods of NoSQL, we can store file in database and retrieve it

from. In this paper, we compare these two approaches by attending to memory and time consuming of each methods

and analyze the results for present a suitable algorithm to storing and retrieving an image in a database. We use

Python programming for interact with database systems.

[Ehsan Azizi Khadem, Emad Fereshteh Nezhad. Storing and Retrieving Images by Relational Data Bases vs

Key-Value store. Rep Opinion 2016;8(2):9-16]. ISSN 1553-9873 (print); ISSN 2375-7205 (online).

http://www.sciencepub.net/report. 2. doi:10.7537/marsroj08021602.

Keywords: Relational Data Bases, Key-Value Store, Storing and Retrieving Image

1. Introduction

A software is not imagine without database.

Relational databases have used for many years with

designing tables, views, triggers, store procedures and

etc. This approach has a strong theory in its backbone.

The ER model consists of Entity and Relationship

concepts generate tables and their dependencies. But

for some data structures it cannot works accurately

[1]. For example when we want to save a file in our

database, tables can only save its name and can’t save

whole data of file. In the other words, if we want to

save user profile and picture is one of profile

information, we must save picture in table of user and

the picture must be saved in a folder on hard disk.

When we want to retrieve of user profile, we should

extract name from table and files from folder then

match name of file by name in table. Furthermore,

interaction between users like friendship and chat is

very difficult to implement in relational databases. In

recent years we against new approach in database

design called NoSQL [2]. It is very flexible and

schema less and has horizontal scaling. There are

several categories for design NoSQL databases like

document based, key-value stored and graph based.

NoSQL databases can save a file as a simple data in

their storage units and handle complex relationship

between data structures with exciting techniques [3].

In this paper, we use Redis that is a key-value storage

NoSQL database for saving images. It can save and

retrieve images as a data in itself and not required to

save it in separate folder. Furthermore we use MySQL

from relational database tools to compare saving and

retrieving images in relational and NoSQL with

attending to time and size consuming. We use Python

programming as an application to manipulate data in

MySQL and Redis[4].

1. Relational Data Base: MySQL

Relational model offers a very mathematically-

adapt way of structuring, keeping and using data. It

began in 1970 and develops for several years because

of its powerful model to interpret the operational

environment. It is based on three main concept: entity,

attribute and relationship. Entity is an object or

anything that has a role in an environment which we

must design a database for it. For example, in

university, student is an entity. Course is too.

Attributes are properties that present details about

entity. A Student has attributes like name, address,

degree, major, etc. Relationships are interactions

between entities. A relationship occurs between an

entities with itself or between two or more entities

those interacting each other. For two entities student

and course, selection is a relationship. One student can

select one or more courses and a course can be

selected by one or more students. A relationship has

its own attributes. Selection relationship between

http://www.sciencepub.net/report
mailto:emad_fereshtehnejad@yahoo.com
http://www.sciencepub.net/report
http://www.dx.doi.org/10.7537/marsroj08021602

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

10

student and course has some attributes: year of

selection, term of selection and mark that a student

gets from a course. In the other words, relationship is

an entity that called relational entity. Relational model

has several tools to implement. One on the most

popular tools of this model is MySQL. MySQL is a

RDBMS. RDBMS is a Relational Database

Management System; A software that enables you to

implement a database with tables, columns and

indices guarantees the relational integrity between

rows of various tables, updates the indices

automatically and interprets an SQL query and

combines information from various tables [1].

MySQL is a fast, easy to use RDBMS being used for

many small and big businesses. MySQL is becoming

so popular because of many reasons: MySQL is

released under an open source license. It is very

powerful program in its own right and handles a large

subsets of the functionality of the most expensive and

powerful database packages. It uses a standard form

of well-known SQL data language and works on many

platforms and interact with several programming

languages like Python, PHP, Java, C, etc. It is very

fast even with large data sets. It supports large

databases, up to 50 million rows or more in a table.

The default file size limit for a table is 4GB, but it can

be increased to 8 TraBytes. It is customizable. To save

images in MySQL, we create a database named

“compareredismysql” in it. Then we create a table

named “imageinfo” with two columns. One column

named “id”, is an integer unique number assigned to

each image. Another column named “name” that

contains name and postfix of image. It is a primary

key for our table. When we save an image, its name

saved in column “name” and an integer number

assigned to it and saved in column “id”. But we

cannot save a file in table. We can only save its name

and assign an id to it but cannot save its content and

must create a folder named “uploads” and save image

file there with name match to name in “imageinfo”

table. When we want to retrieve images, muse extract

name of each image from table, match it to name of

images that saved in folder “uploads” then show

image to user. It wants two referring by application to

folder and database.

2. NoSQL: Redis

NoSQL databases are fast becoming the standard

data platform for applications that make heavy use of

telecommunication or internet enabled devices

(browser based, sensor-driven or mobiles) as a front-

end. The term NoSQL was first used in 1998 for a

relational database that omitted the use of SQL and

picked up again in 2009[5][6]. The computer word

article summarize reasons commonly given to develop

and use NoSQL data stores. First, avoidance of

unneeded complexity. Relational databases provides a

variety of features and strict data consistency. But this

rich features set and the ACID properties

implemented by RDBMSs might be more than

necessary for particular applications and use cases.

Second, high throughput. Some NoSQL databases

provide a significantly higher data throughput than

traditional RDBMSs. Third, horizontal scalability and

running on commodity hardware [7][8]. In contrast to

relational database management systems, most

NoSQL databases are designed to scale well in the

horizontal direction and not reply on highly available

hardware. Machines can be added or removed (or

crashed) without canceling the same operational

efforts to perform sharding in RDBMS cluster-

solutions. Forth, avoidance of expensive object-

relational mapping. Most of NoSQL databases are

designed to store data structures that are either simple

or more similar to the ones of object oriented

programming languages compared to relational data

structures. Fifth, complexing and cost of setting up

database clusters [9][10]. NoSQL databases are

designed in a way that pc clusters can be easily and

cheaply expand without the complexity and cost of

sharding. Sixth, compromising reliability for better

performance [11]. Because of generating several

backups of data in nodes in NoSQL, it is more reliable

system than relational. Seventh, movement in

programming languages and development frameworks

[12]. Eighth, requirements of cloud computing consist

of high until almost ultimate scalability in horizontal

direction and low administration overhead [13].

NoSQL have three main categories: document store,

key-value store and graph based. Each of these

categories has their own tools to implement a DBMS

[14]. Redis is a key-value store tool often described as

an in memory persistent. Redis docs hold all data in

memory and it does write that out to disk for

persistence, but it’s much more than a simple key-

value store [15]. Redis exposes five different data

structures, only one of them is a typical key value

structure. If we were to apply this data structure

concept to the relational world, we could say that

databases expose a single data structure tables [16].

Tables are both complex and flexible. There isn’t

much you can’t model, store or manipulate with

tables. Specially, not everything is as simple, or as

fast, as it thought to be. If we want to use specific data

structures to specific problems, Redis is a suitable

approach. If we are dealing with scalars, lists, hashes,

or sets, we can store them as scalars, lists, hashes, and

sets by Redis. In Redis, we can save and retrieve an

image as a byte stream. We can set its name as a key

and its content as a value. By a single “set” statement,

we can save it and by a “get” statement retrieve it.

3. Application: Python

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

11

Python is a general purpose, interpreted,

interactive, object oriented and high level

programming language. Python was designed to

highly readable which uses English keywords

frequently where as other languages use punctuation

and it has fewer syntactical constructions than other

languages. It is interpreted and processed at runtime

by the interpreter and you do not need to compile your

program before executing it. It is interactive and you

can actually sit at a Python prompt and interact with

the interpreter directly to write your programs. It is

object oriented and supports object oriented style or

technique of programming that encapsulates code

within objects [4]. It is a great language for the

beginner programmers and supports the development

of a wide range of applications from simple text

processing to web browsers to games. It connects to

MySQL by pymysql library. This library is a

connector that provides the ability to write and

execute SQL statements in Python. It can connect to

Redis too by “redis” library. We can write Redis

statement in Python for interacting with DBMS.

Python has a library named PIL (Python Imaging

Library) that adds image processing capabilities to its

interpreter. The core image library is designed for fast

access to data stored in a few basic pixel formats. It

should provide a solid foundation for a general image

processing tool.

4. Algorithm and Implementation:

We want to compare size and time of saving and

retrieving images in Redis and MySQL. Keep in mind

Redis stores data in RAM and we must execute

commands and queries that their data overloading less

than capacity of RAM. We have a picture in JPEG

format. Size of the image is 800 kilo bytes. We run

storing and retrieving programs for 10 to 7000 times,

then compare the size and the time of executing each

codes.

First, we execute the Python code for saving images in

MySQL database:

import tornado.httpserver, tornado.ioloop,

tornado.options, tornado.web, os.path, random,string

import pymysql

import os,time

conn = pymysql.connect(host="localhost",

user="root", passwd="" ,

db="compareredismysql")

cur = conn.cursor()

def getFolderSize(folder):

 total_size = os.path.getsize(folder)

 for item in os.listdir(folder):

 itempath = os.path.join(folder, item)

 if os.path.isfile(itempath):

 total_size += os.path.getsize(itempath)

 elif os.path.isdir(itempath):

 total_size += getFolderSize(itempath)

 return total_size/(1024*1024)

class Application(tornado.web.Application):

 def __init__(self):

 handlers = [

 (r"/", IndexHandler),

 (r"/upload", UploadHandler)

]

 tornado.web.Application.__init__(self, handlers)

class IndexHandler(tornado.web.RequestHandler):

 def get(self):

 self.render("tornadoUpload.html")

class UploadHandler(tornado.web.RequestHandler):

 def post(self):

 try:

 file1 = self.request.files['file1'][0]

 except:

 file1=None

 original_fname = file1['filename']

 m = original_fname.split('.')

 sql = "SELECT table_schema

,Round(Sum(data_length + index_length) , 1)

FROM information_schema.tables WHERE

table_schema='compareredismysql' "

 cur.execute(sql)

 for r in cur:

 start_size2 = int(r[1])/(1024*1024)

 print("start_size2 db= ",start_size2)

 start_time = time.time()

 start_size1 = getFolderSize("static/uploads/")

 print("start_size1 folder= ",start_size1)

 for i in range(7000):

 sql = "INSERT INTO imageinfo (id,name)

VALUES (%s, %s)"

 n = str(i)+'.'+m[1]

 cur.execute(sql, (i,n))

 output_file = open("static/uploads/" + n,

'wb')

 output_file.write(file1['body'])

 conn.commit()

 print("MySQL Time = " , time.time()-

start_time)

 size1 = getFolderSize("static/uploads/")-

start_size1

 print("size1 folder = ",size1)

 sql = "SELECT table_schema

,Round(Sum(data_length + index_length) , 1)

FROM information_schema.tables WHERE

table_schema='compareredismysql' "

 cur.execute(sql)

 for r in cur:

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

12

 size2 = (int(r[1])/(1024*1024)-start_size2)

 print("size2 db = ",size2)

 conn.close()

 print ("Size: " + str(size1+size2))

 self.render('image.html',n=n)

settings = {

'template_path': 'templates',

'static_path': 'static',

"xsrf_cookies": False

}

application = tornado.web.Application([

 (r"/", IndexHandler),

 (r"/upload", UploadHandler)

], debug=True,**settings)

print ("Server started.")

if __name__ == "__main__":

 application.listen(8888)

 tornado.ioloop.IOLoop.instance().start()

Second, we execute the Python code for saving

images in Redis:

import tornado.httpserver, tornado.ioloop,

tornado.options, tornado.web, os.path, random, string

from PIL import Image

import redis

from io import BytesIO

import base64

import time

import string

def converttostr(x):

 return str(x)

class Application(tornado.web.Application):

 def __init__(self):

 handlers = [

 (r"/", IndexHandler),

 (r"/upload", UploadHandler)

]

 tornado.web.Application.__init__(self, handlers)

class IndexHandler(tornado.web.RequestHandler):

 def get(self):

 self.render("tornadoUpload.html")

class UploadHandler(tornado.web.RequestHandler):

 def post(self):

 try:

 file1 = self.request.files['file1'][0]

 except:

 file1=None

 original_fname = file1['filename']

 #im = Image.open(file1)

 #output = BytesIO(file1['body'])

 #im.save(output,im.format)

 r = redis.StrictRedis(host='localhost')

 redisdbinfo1=r.info()

 size1 = (redisdbinfo1['used_memory_human'])

 print("size1 : ",size1)

 size1 = float(size1[0:(len(size1)-1)])

 m = original_fname.split('.')

 start_time = time.time()

 for i in range(7000):

 output = BytesIO(file1['body'])

 s = converttostr(i)

 n = s+'.'+m[1]

 r.set(n, output.getvalue())

 print("Redis Time = " , time.time()-start_time)

 h=r.get(n)

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

13

 output = BytesIO(h)

 s = output.getvalue()

 str = base64.b64encode(s)

 output.close()

 self.render("image.html",img_tag = str)

 redisdbinfo2=r.info()

 size2 = (redisdbinfo2['used_memory_human'])

 print("size 2 : ",size2)

 size2 = float(size2[0:(len(size2)-1)])

 print("total size : ",size2-size1)

settings = {

'template_path': 'templates',

'static_path': 'static',

"xsrf_cookies": False

}

application = tornado.web.Application([

 (r"/", IndexHandler),

 (r"/upload", UploadHandler)

], debug=True,**settings)

print ("Server started.")

if __name__ == "__main__":

 application.listen(8000)

 tornado.ioloop.IOLoop.instance().start()

Table 1: Time for saving

Rows MySQL Redis

10 0.31 0.061

100 0.30 0.43

1000 14.05 4.31

2000 27.31 8.35

3000 60.16 12.42

4000 86.64 16.83

5000 147.80 21.05

6000 161.91 25.41

7000 204.46 26.64

Table 2: Size for saving

Rows MySQL Redis

10 8.067m 9.05 m

100 80.68 81.65 m

1000 806.97 807.82 m

2000 1.61G 1.58G

3000 2.42G 2.36G

4000 3.22G 3.15G

5000 4.03G 3.94G

6000 4.84G 4.73G
7000 5.64G 5.52G

For saving, these results are generated:

Figure 1: Time for saving in Redis and MySQL (Seconds)

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

14

Figure 2: Size for saving in Redis and MySQL (Mega Bytes)

Now, we execute retrieval Python code in MySQL:

from PIL import Image

import time,pymysql,os

import redis

from io import BytesIO

import shutil

#from tkinter import PhotoImage

conn = pymysql.connect(host="localhost",

user="root", passwd="" ,

db="compareredismysql")

cur = conn.cursor()

for i in range(7000):

 sql = "INSERT INTO imageinfo (id,name)

VALUES (%s, %s)"

 n = str(i)+'.jpg'

 cur.execute(sql, (i,n))

 name = "static/uploads/" + n

 shutil.copy2('C:/Desert.jpg', name)

conn.commit()

t1 = time.time()

for j in range(7000):

 sql = "SELECT name FROM imageinfo

WHERE id=%s"

 cur.execute(sql,(j))

 for r in cur:

 name = "static/uploads/" + r[0]

 im = Image.open(name)

t2 = time.time()-t1

print("Image Retrieval in MySQL : ",t2)

im.show()

conn.close()

Then we execute retrieval Python code in Redis:

from PIL import Image

import redis

from io import BytesIO

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

15

import time

im = Image.open('C:/Desert.jpg')

output = BytesIO()

im.save(output,'JPEG')

r = redis.StrictRedis(host='localhost')

for i in range(7000):

 k = str(i)+'.jpg'

 r.set(k, output.getvalue())

t1 = time.time()

for j in range(7000):

 k = str(j)+'.'+'jpg'

 h=r.get(k)

 output = BytesIO(h)

t2 = time.time()-t1

print("Image Retrieval in Redis : ",t2)

i = Image.open(output)

i.show()

output.close()

For retrieving, these results are generated:

Table 3: Time for retrieving

Rows MySQL Redis

10 0.007 0.01

100 0.05 0.03

1000 29.18 0.37

2000 8.67 0.86

3000 4.07 1.21

4000 3.21 1.65

5000 4.54 1.98

6000 15.59 2.18

7000 8.32 2.69

Figure 3: Time for retrieving in Redis and MySQL (Seconds)

http://www.sciencepub.net/report

 Report and Opinion 2016;8(2) http://www.sciencepub.net/report

16

For saving, Redis is very faster than MySQL and

it consumes less memory on disk. But take care that if

data volume is higher than RAM capacity, Redis has

lower speed than MySQL.

In retrieving, Redis is faster than MySQL but not

very much. When we study both saving and

retrieving, mine that Redis has better functionality in

time and memory consuming. In storing, Redis and

MySQL have predictable performance and their

increasing have a static ratio but in retrieving MySQL

has tolerant time consuming and it is not predictable,

Redis has a normal growing and it seems better for

large image databases.

Conclusion:

We know that NoSQL are faster and simpler

than relational databases for large datasets if data is

text or has simple structure. When data structure is

complex like image, key-value store is a good choice

for storing our data. In order to results of our

implementation, Redis has better performance for

saving and retrieving images in database than MySQL

and we can predict its behavior with growing data

volume. When we have sufficient RAM capacity,

Redis is suitable. In future, we can study saving and

retrieving image and other file formats with other

NoSQL tools.

References:

1. Acharya, S., Carlin, P., Galindo-Legaria,

C.,Kozielczyk, K., Terlecki, P., and Zabback,

P.2008. Relational support for flexible

schemascenarios. Proc. VLDB Endow. 1, 2

(Aug. 2008), 1289-1300. DOI =

http://doi.acm.org/10.1145/1454159.1454169.

2. Bogdan Tudorica, Bucur Cristian – A

comparison between several NoSQL databases

with comments and notes,The proceedings of

”2011 – Networking in Education and Research”

IEEE International Conference, June 23, 2011–

June 25, 2011, Alexandru Ioan Cuza University

from Iasi.

3. Python Software Foundation, 2012. Python/C

API Reference Manual. Python Software

Foundation.

4. Message in Redis mailing list

http://groups.google.com/group/redisdb/msg/ca3

98a90ea78bfc5.

5. Barabasi, A. (2003). Linked: How everything

isconnected to everything else and what it

means. New York: Plume.

6. Bishop, S., Helbing, D., Lukowicz, P., & Conte,

R. (2011). FuturICT: FET flagship pilot project.

Procedia Computer Science, 7, 34–38.

7. Cointet, J. P., & Roth, C. (2009). Sociosemantic

dynamics in a blog network.International

Conference on Computational Science and

Engineering. doi:10.1109/CSE.2009.105.

8. Conte, R., Gilbert, N., Bonelli, G., & Helbing,D.

(2011). FuturICT and social sciences: BigData,

big thinkingZeitschrift für Soziologie, 40,412–

413.

9. Snijders, C., & Weesie, J. (2009). Reputation in

an online programmers’ market. In K. S. Cook,

C. Snijders, 23.V.Buskens, & C. Cheshire (Eds.),

Trust and reputation (pp. 166–185). New York:

Russel Sage Foundation.

10. Prof. Walter Kriha, (2012). NoSQL Databases,

(pp. 85-110).

11. Redis home page http://code.google.com/p/redis.

12. Active Redis home page

http://www.activeredis.com.
13. DeCandia, G., Hastorun, D., Jampani, M.,

Kakulapati, G.,Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., and Vogels,

W. 2007. Dynamo: amazon’s highly available

key-value store. In Proceedings of Twenty-First

ACM SIGOPS Symposium on Operating

Systems Principles (Stevenson, Washington,

USA, October 14 - 17, 2007). SOSP ’07. ACM,

New York, NY, 205-220. DOI =

http://doi.acm.org/10.1145/1294261.1294281.

14. Agneeswaran VS, Tonpay P, Tiwary J (2013)

Paradigms for realizing machine learning

algorithms. Big Data 1(4):207–214.

15. Zaharia M, Chowdhury M, Franklin MJ, Shenker

S, Spark SI (2010) Cluster Computing with

Working Sets. In:Proceedings of the 2nd

USENIX Conference on Hot Topics in Cloud

Computing., pp 10–10.

16. Berkeley Data Analysis Stack.

https://amplab.cs.berkeley.edu/software.

2/13/2016

http://www.sciencepub.net/report
http://groups.google.com/group/redisdb/msg/ca398a90ea78bfc5
http://groups.google.com/group/redisdb/msg/ca398a90ea78bfc5
http://code.google.com/p/redis/
http://www.activeredis.com/

