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The New Prime theorem (241)

P,jP*% +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5402 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k— j(j=1,k-1)

QP!
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P
(@) =T[P-1- 7(P) o
w=11P
where po, X (P) is the number of solutions of congruence
k-1
M| jg*” +k-j|=0 (mod P),q =1,---,P-1
J=1 (3
ir X(P)SP=2 yen from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
L@ N
ﬂk(N,2)=HPSN:jP4°2+k—j=prime}‘~ 2(,(,)1 - -
(402)" ¢"(w) log" N 6

| Ho)=TI(P-1)
k=37

wher

Example 1. Let . From (2) and(3) we have
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Jo(@) =0 )
we prove that for k=37 , (1) contain no prime solutions
Example 2. Let k#3,7 . From (2) and (3) we have
J,(w)#0 ()
k#3,7

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (242)
P,jP*" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5404 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
; pA04 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(2
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q=1,---,P-1
=1 (3
it X(P)SP=2 on from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP™ + k= j = prime]| ~ (@) ’

(404)" ¢"(w) log" N 6)

w)=1I(P-1
where ) P ( ) .
Exampl k=35
ple 1. Let . From (2) and(3) we have

J,(0)=0 (7
We prove that for k=35 (1) contain no prime solutions.
Example 2. Let k>5 . From (2) and (3) we have
J,(w)#0 (2
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We prove that for k>5 , (1) contain infinitely many prime solutions

The New Prime theorem (243)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5406 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,--,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

@)
o=I1P

where po, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q =1,---,P-1

J=1

i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
k=1 gk k
(406)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP™ + k= j = prime]| ~

, A@)=T1(P-1)
k=3,59

wher

Example 1. Let
J,(w)=0

. From (2) and(3) we have

7

We prove that for k=3,59
k #3,59

, (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 (8)

k+#3,59

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (244)
P,jP*® +k—j(j=1,--,k=1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP vk

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P, jP* " 4k —j(j =1,k =1) n
contain infinitely many prime solutions or no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- 7(P)]

(2)
w=11P
where po, X (P) is the number of solutions of congruence
k-1
nl[jq“‘)g +k-j]=0 (modP),q=1,--,P-1
7= (3
it X(P)SP=2 en from (2) and (3) we have
J,(w)#0 €Y
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~ (@) .

(408)" ¢" (w) log" N )

w)=1I(P-1

where o) P ( ) .
Example 1. Let k=3,5,7,13,103,137,409 . From (2) and(3) we have
J2(@) =0 €
We prove that for k=3,5,7,13,103,137,409 (1) contain no prime solutions.
Example 2. Let k#3,5,7,13,103,137,409 . From (2) and (3) we have
J,(w)#0 (2)

k#3,5,7,13,103,137,409

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (245)
P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
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Theorem. Let k be a given odd prime.
P,jP" +k—j(j=1,--,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P~1- 7(P)]

(D

2)
o=I1P

where P

k-1

H[qu +k—j] =0 (modP),q=1,---,P—1

J=1

i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it XP)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

It J,(w)#0

, X () is the number of solutions of congruence

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(410" ¢" () log" N )

7,(N,2) =‘{PS N: jpP*° +k—j:prime}‘ ~

Hw) =T1(P=1)
k=3,11,83

where

Example 1. Let
J,(w)=0

. From (2) and(3) we have

7

We prove that for k=3,11,83
k#3,11,83

, (1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k#3,11,83

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (246)
P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P k-
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP*"? +k—j(j=1,k-1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D
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J,(@)=TI[P-1- £(P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
M| jg** +k-j|=0 (mod P),q =1,---,P-1
J=1 (3
it X(P)SP =2 4en from (2) and (3) we have
J,(w)#0 @)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7, (N,2)= ‘{P SN: P +k—j= prime}‘ ~ z(f{)lwk -

(412)" ¢"(w) log" N 6)

w)=II(P-1
where ) P ( ) .
Exampl k=35
ple 1. Let . From (2) and(3) we have

J,(0)=0 (7
We prove that for k=35 , (1) contain no prime solutions.
Example 2. Let k>5 . From (2) and (3) we have
J,(w)#0 ()

We prove that for k>5 , (1) contain infinitely many prime solutions

The New Prime theorem (247)
P,jP" +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P k-
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
- p4l4 .o
P, jP +k—](]:1,--~,k—1)’ D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =T1[P=1-x(P)] (2)

o=I1P

where po, X (P) is the number of solutions of congruence
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k-1

H[qu +k—j]50 (mod P),q =1,---,P—1

J= (3
if X(P)SP =2 gon from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
k-1

7 (N.2)=[{P<N: jP" + k= j = prime]| ~ (4‘{24 ()f))lf;k o ol 5

g (6
where 2@ =TIP=1)
Example 1. Let k=3,7,19,97,139 . From (2) and(3) we have
J2(@) =0 €
We prove that for k=3,7,19,97,139 , (1) contain no prime solutions.
Example 2. Let k#3,7,19,97,139 . From (2) and (3) we have
J,(w)#0 (2)

k#3,7,19,97,139

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (248)
P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P k-
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
i p416 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(2
w=I11P
where po, X (P) is the number of solutions of congruence
k-1
H][jq‘”é +k=j]|=0 (mod P),q=1,---,P-1
7= (3)
i X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 @)
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We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

J(0)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
k-1

7, (N,2)= ‘{P <SN: P +k—j= prime}‘ ~ Jz(i{)lwk ]Z]

(416)" ¢"(w) log" N )
where 2@ =TIP=1)
Example 1. Let k=3,517,53 . From (2) and(3) we have
Jo(@)=0 @)
We prove that for k=3,517,53 , (1) contain no prime solutions.
Example 2. Let k#3,5,17,53 . From (2) and (3) we have
J,(w)#0 (2)

k#3,517,53

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (249)
P,jP" +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

P k-
Using Jiang function we prove that J J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.

P,jP418+k—j(j:1a"'ak_1)’

QP!

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘”x +k=j]=0 (modP),q=1,--,P-1
J= (3
i X(P)SP =2 gen from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N

7 (N.2)=[{P<N: jP" +k—j = prime}| ~

(418)" "' ¢" (@) log* N )
where o) = II—’I(P D .
Example 1. Let k=3,23,419 . From (2) and(3) we have
J2(@) =0 €
We prove that for k=3,23,419 , (1) contain no prime solutions.
Example 2. Let k#3,23,419 . From (2) and (3) we have
J,(w)#0 (2)

k#3,23,419

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (250)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5420 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP¥ +k—j(j=1,,k-1)

(D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P
(@) =T[P-1-7(P) o
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q=1,---,P-1
J=1 (3
it X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
Lo N
7 (N.2)=[{P<N: jP™ + k= j = prime]| ~ (@) !
(420)" ¢"(w) log" N 6

50



Report and Opinion 2016;8(2) http://www.sciencepub.net/report

| ) =TI(P-)
k=3,5,7,11,13,29,31,43,61,71,211,421

wher

Example 1. Let
J,(w)=0

. From (2) and(3) we have

D
k=3,5,7,11,13,29,31,43,61,71,211,421

k#3,5,7,11,13,29,31,43,61,71,211,421

We prove that for , (1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

We prove that for K %33 7,11,13,29,31,43,61,71,211,421

solutions

(1) contain infinitely many prime

The New Prime theorem (251)

P,jP? +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP? +k—j(j=1,-,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- 7(P)]

(D

(2)
w=11P

where p, X (P) is the number of solutions of congruence

k-1

nl[qu +k=j]|=0 (mod P),q=1,---,P-1

/= (3

ir X(P)SP=2 yen from (2) and (3) we have

J,(w)#0

We prove that (1) contain infinitely many prime solutions.

i XP)=P =1 gen from (2) and (3) we have

J,(w)=0

We prove that (1) contain no prime solutions [1,2]

i (@70

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(422)"'¢" () log" N )

7 (N.2)=[{P<N: jP* + k= j = prime]| ~

where o) = I;I(P b .

Example 1. Let k=3 From (2) and(3) we have

J2(@) =0 €
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we prove that for k=3 , (1) contain no prime solutions

Example 2. Let k>3 . From (2) and (3) we have

J,(w)#0 ()

We prove that for k>3 (1) contain infinitely many prime solutions

The New Prime theorem (252)
P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 424 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,-,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- 7(P)]

(D

2
o=I1P
P

where , X (P) is the number of solutions of congruence

':r_lj[jq424 +k=j]|=0 (mod P),q=1,---,P-1
i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

i J2(@)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
k=1 gk k
(424)" ¢"(w) log" N )

7 (N.2)=[{P<N: jP* + k= j = prime]| ~

#) =TI(P-1)
k=3,5107

where

Example 1. Let
J,(w)=0

. From (2) and(3) we have

7

We prove that for k=3,5,107
k #3,5,107

(1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 ()

k#3,5,107

We prove that for , (1) contain infinitely many prime solutions
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The New Prime theorem (253)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 426 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P, jP* +k— j(j=1,k-1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

@)
o=I1P

where po, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q=1,---,P-1

J=1

i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(426)" " ¢* (w) log" N 6

7 (N.2)=[{P<N: jP* + k= j = prime]| ~

where Ho) = I;I(P D .

Example 1. Let k=37
J,(0)=0

. From (2) and(3) we have

7

We prove that for k=37
k#3,7

, (1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k#3,7

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (254)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com
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Abstract
JP vk

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P,jP428+k—j(j=1a"'ak_1)_ D

contain infinitely many prime solutions or no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P=1- £(P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k=j|=0 (mod P),q=1,--,P-1
J=1 (3
it X(P)SP=2 4en from (2) and (3) we have
J,(w)#0 4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J2(@) =0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7, (N,2)= HP <SN:jP*+k—j= prime}‘ ~ z(fi)lwk -

(428)" ¢ (w) log" N )

w)=1I(P-1

where @) P ( ) .
Example 1. Let k=35 . From (2) and(3) we have
J2(@) =0 €
We prove that for k=35 (1) contain no prime solutions.
Example 2. Let k#3,5 . From (2) and (3) we have
J,(w)#0 (8)

k#3,5

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (255)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
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- 430 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P
(@) =TI[P~1- £(P)] o
w=11P
P

where , X (P) is the number of solutions of congruence

ﬁ[qu +k=j]|=0 (mod P),q=1,---,P-1
i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(430) "' ¢" () log" N )

7 (N.2)=[{P<N: jP™ + k= j = prime]| ~

#) =TI(P-1)
k=3,11,431

where

Example 1. Let . From (2) and(3) we have

J(0)=0 7

We prove that for k=3,11,431
k#3,11,431

, (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 (8)

k#3,11,431

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (256)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 432 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
- 432 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =T[P=1-x(P)] (2)
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o=I1P

where po, X (P) is the number of solutions of congruence
k-1

H[qu +k—j]50 (mod P),qg =1,---,P—1

J=1

it X(P)SP=2 4on from (2) and (3) we have
J,(w)#0 0
We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

3

JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7. (N,2)= HP SN:jPP +k—j= prime}‘ ~ z(f),)lwk k
(432)" ¢"(w) log" N )

| o) =TI(P-)
Example 1. Let k=3,57,13,17,19,37,73,109,433 . From (2) and(3) we have
J2(@) =0 €

We prove that for k=3,5,7,13,17,19,37,73,109,433 , (1) contain no prime solutions.
Example 2. Let k#3,5,7,13,17,19,37,73,109,433 . From (2) and (3) we have

J,(w)#0 (2)
k#3,5167

wher

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (257)
P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
F p434 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
(@) =T[P-1- 7(P)]

(2
w=11P
where P, Z(P) i the number of solutions of congruence
k-1
Hl[jq434 +k—j} =0 (modP),q=1,---,P—1
) (3)

if X(P)SP =2 4en from (2) and (3) we have
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J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(434)""¢" (w) log" N )

7,(N,2) =‘{PS N:jP™ +k—j:prime}‘ ~

where o) = II—’I(P b .

Example 1. Let k=3 From (2) and(3) we have

Jo(@)=0 )

We prove that for k=3 , (1) contain no prime solutions.

Example 2. Let k>3 . From (2) and (3) we have

J,(w)#0 (8)

We prove that for k>3 , (1) contain infinitely many prime solutions

The New Prime theorem (258)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
PajP436+k—j(j:1a"'ak_1)’ D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- 7(P)]

(2)
w=1I1P
where po, X (P) is the number of solutions of congruence
k-1
H][qu +k=j]|=0 (mod P),q=1,---,P-1
7= (3
ir X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J (o)™ N

7, (N,2) =‘{PS N: jP** +k—j:prime}‘ ~

k=1 sk k
(436)" ¢"(w) log" N )
w)=II(P-1
where ) P( )
Example 1. L k=3,5
ple 1. Let . From (2) and(3) we have
J,(@)=0 )

We prove that for k=3,5
Example 2. Let k>5 . From (2) and (3) we have
J,(w)#0 ()

, (1) contain no prime solutions.

We prove that for k>5 , (1) contain infinitely many prime solutions

The New Prime theorem (259)
P, jP* +k—j(j=1,,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP vk

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P,jP438+k—j(j=1,"',k—1) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o
where p, X is the number of solutions of congruence
k-1

H[jq438 +k—j]50 (mod P),g=1,---,P—1

j=1 (3)
i X(P)SP=2 4on from (2) and (3) we have
J,(w)#0 @)

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
If /) (@) #0 then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ +k = j = prime]| ~ (@) .
(438)" ¢ (w) log" N )
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, A@)=TI(P-1)

wher

Example 1. Let k=3,7,439 . From (2) and(3) we have

J2(@) =0 €
We prove that for k=3,7,439 , (1) contain no prime solutions.

Example 2. Let k#3,7,439 . From (2) and (3) we have

J,(w)#0 ()
We prove that for k#3,7,439 , (1) contain infinitely many prime solutions

The New Prime theorem (260)
P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5440 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,-,k-1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- 7(P)]

(D

(2)
w=11P

where p, X (P) is the number of solutions of congruence

k-1

H][qu +k=j]|=0 (mod P),q=1,---,P-1

/= (3

ir X(P)SP=2 gon from (2) and (3) we have

J,(w)#0

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
k=1 gk k
(440)" ¢"(w) log" N )

7 (N.2)=[{P<N: jP* + k= j = prime]| ~

, A@)=T1(P-1)

wher .
k=3,511,23,41,89

Example 1. Let
J,(w)=0

. From (2) and(3) we have
D
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k=3,511,23,41,89

We prove that for , (1) contain no prime solutions.

Example 2. Let k#3,5,11,23,41,89 . From (2) and (3) we have
J,(w)#0 (2)
We prove that for k#3,5,11,23,41,89 , (1) contain infinitely many prime solutions

The New Prime theorem (261)

P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P, jP* 4 k= j(j=1,-,k=1) 0
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =T[P=1-x(P)] (2)

o=I1P
P

where , X (P) is the number of solutions of congruence

k-1
H[jq442 +k—j]50 (mod P),q =1,---,P—1

J=1

3)
it X(P)SP=2 4en from (2) and (3) we have

J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.

i Z(P)=P =1 o0 from (2) and (3) we have

Jo(@) =0 (5)

We prove that (1) contain no prime solutions [1,2]

If £ (@) #0 then we have asymptotic formula [1,2]

J (o)™ N
(442)""' ¢" () log" N )

7,(N,2) =‘{PS N: jP* +k—j:prime}‘ ~

¢(@) =11(P~1)

Example 1. Let k=3,443 . From (2) and(3) we have
Jy(0)=0 (7

we prove that for k=3,443 , (1) contain no prime solutions

Example 2. Let k#3,443 . From (2) and (3) we have
J,(w)#0 (8)

where
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k #3,443

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (262)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 444 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,-,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

(2
w=11P
P

where , X (P) is the number of solutions of congruence

k-1
H[jq444 +k—j]50 (mod P),q =1,---,P—1

J=1

i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

i (@70

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
k=1 gk k
(444)" ¢" (w) log" N )

7 (N.2)=[{P<N: jP* + k= j = prime]| ~

where

Hw) =TI(P-1)
Example 1. Let ¥ =3,5,7,13,149
J,(w)=0

. From (2) and(3) we have

@b
We prove that for k=3,5,7,13,149
k#3,57,13,149

(1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k+3,57,13,149

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (263)
P,jP* +k—j(j=1,--,k=1)
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Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 446 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
; D446 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- 7(P)]

(2)
w=I1P
where po, X (P) is the number of solutions of congruence
k-1
M| jg“+k-j|=0 (mod P),q=1,---,P-1
J=1 (3
it X(P)SP=2 en from (2) and (3) we have
J,(w)#0 €Y
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP* + k= j = prime]| ~ 2 :

(446)" ¢"(w) log" N 6)

w)=1I(P-1

where ) P ( ) .
Example 1. Let k=3 From (2) and(3) we have
J(0)=0 7
We prove that for k=3 , (1) contain no prime solutions.
Example 2. Let k>3 . From (2) and (3) we have
J,(w)#0 (8)

We prove that for k>3 (1) contain infinitely many prime solutions

The New Prime theorem (264)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 448 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime
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Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,--,k=1)
contain infinitely many prime soluti(;ns or no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P~1- 7(P)]

(D

2)
o=I1P

where P

k-1

H[qu +k—j]50 (mod P),g=1,---,P—1

J=1

i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it XP)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

, X () is the number of solutions of congruence

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(448)"' ¢" (@) log* N )

7 (N.2)=[{P<N: jP* +k—j = prime}| ~

P) =TI(P-1)
k=3,517,29,113,449

where

Example 1. Let
J,(w)=0

. From (2) and(3) we have

D)
We prove that for k=3,517,29,113,449

k#3,5,17,29,113,449

(1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k#3,5,17,29,113,449

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (265)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5450 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP*¥ +k—j(j=1,,k-1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

(D
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Jy(@) =T[P=1-x(P)] (2)
m:gP

where , X (P) is the number of solutions of congruence

ﬁ[qu +k=j]|=0 (mod P),q=1,---,P-1
i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(450)" "' ¢* (w) log"* N )

7,(N,2) =‘{PS N:jP*° +k—j:prime}‘ ~

P) =TI(P-1)
k=3,7,11,19,31,151

where

Example 1. Let
J,(w)=0

. From (2) and(3) we have

@b
We prove that for k=3,7,11,19,31,151

k+3,7,11,19,31,151

, (1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k+3,7,11,19,31,151

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (266)
P, jP¥ +k— j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 452 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
. 452 .

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]

Jy(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o

w=11P

P

where , X (P) is the number of solutions of congruence
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k-1
H[qu +k—j]50 (mod P),q =1,---,P—1

7=l 3)
if X(P)SP =2 gon from (2) and (3) we have
J,(w)#0 (4

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP* + k= j = prime]| ~ (@) !
(452)" ¢"(w) log" N )

¢(@) =11(P~1)

where .

Example 1. Let k=3,5,227 . From (2) and(3) we have

Jo(@) =0 7
k=3,5227

We prove that for , (1) contain no prime solutions.

Example 2. Let k#3,5,227 . From (2) and (3) we have
J,(w)#0 ()

k#3,5,227

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (267)
P,jP* +k—j(j=1,-,k—=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP*™ +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P,jP454+k—j(j=1,"',k—1) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- 7(P)]

(2
w=I11P
where po, X (P) is the number of solutions of congruence
k-1
H][qu +k=j]|=0 (mod P),q=1,---,P-1
7= (3)
i X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 @)

65



Report and Opinion 2016;8(2) http://www.sciencepub.net/report

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

It J,(w)#0

(5

then we have asymptotic formula [1,2]
J (o)™ N
(454)" " ¢" (w) log" N )

7,(N,2) =‘{PS N:jpP™ +k—j:prime}‘ ~

where o) = II—’I(P b .

Example 1. Let k=3 From (2) and(3) we have

We prove that for k=3 , (1) contain no prime solutions.

Example 2. Let k>3 . From (2) and (3) we have

J,(w)#0 (8)

We prove that for k>3 , (1) contain infinitely many prime solutions

The New Prime theorem (268)
P, jP* +k— j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 456 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP* +k—j(j=1,--,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

2
w=11P

where P

k-1

H][qu +k=j]|=0 (mod P),q=1,---,P-1

/= (3

it X(P)SP=2 4en from (2) and (3) we have

J,(w)#0

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 yen from (2) and (3) we have

J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

, X (P) is the number of solutions of congruence

4

(5

then we have asymptotic formula [1,2]
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J (o)™ N
k-1 1k k
(456)" ¢"(w) log" N )

7, (N,2) =‘{PS N: jP*° +k—j:prime}‘ ~

H) =TI(P-1)
k=3,5,7,13,229,457

where

Example 1. Let . From (2) and(3) we have

Jo(@) =0 )
We prove that for k=3,5,7,13,229,457 , (1) contain no prime solutions.

Example 2. Let k#3,5,7,13,229,457 . From (2) and (3) we have

J,(w)#0 (2)
We prove that for k#3,5,7,13,229,457 , (1) contain infinitely many prime solutions

The New Prime theorem (269)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P’jP458+k_j(j:1’...’k—1) (1>

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P=1- £(P)]

(2)
w=I1P
where po, X (P) is the number of solutions of congruence
k-1
M| jg* +k=j|=0 (mod P),q=1,--,P—1
J=1 (3
it X(P)SP=2 4en from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP*™ +k = j = prime]| ~ (@) .
(458)" ¢ (w) log" N )

where o) = I;I(P b .

Example 1. Let k=3 From (2) and(3) we have
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Jo(@) =0 )
We prove that for k=3 , (1) contain no prime solutions.

Example 2. Let k>3 . From (2) and (3) we have

J,(w)#0 (8)

We prove that for k>3 , (1) contain infinitely many prime solutions

The New Prime theorem (270)
P,jP* +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP* k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P,jP460+k—j(j=1=""k_1)’ 20
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P—1- y(P
(@) =TI[P-1- 7(P) o
w=11P
P

where , X (P) is the number of solutions of congruence

k-1
H[jq%o +k—j]50 (mod P),q =1,---,P—1

J=1

i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have
D)

(5

then we have asymptotic formula [1,2]
J (o)™ N
(460) "' ¢" () log" N )

7, (N,2) = ‘{P SN P 4 k- j= prime}‘ ~

H) =TI(P-1)
k=3,5,11,47,461

where

Example 1. Let . From (2) and(3) we have

J,(®)=0 b
k=3,5,11,47,461

k#3,511,47,461

We prove that for , (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 (8)
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k#3,5,11,47,461

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (271)

P, jP* +k— j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP* k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P,jP462+k—j(j=1a"'ak_1)_ 20
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P
(@) =T[P-1- 7(P) o
w=11P
P

where , X (P) is the number of solutions of congruence

k-1
H[jq%z +k—j]50 (mod P),qg =1,---,P—1

J=1
i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(462) "' ¢" (w) log" N )

7, (N,2) = ‘{P <N Py k- j= prime}‘ ~

¢(@) =11(P~1)
k=3,7,23,43,67,463

where

Example 1. Let . From (2) and(3) we have

A=t @b
we prove that for k=3,7,23,43,67,463

k#3,7,23,43,67,463

, (1) contain no prime solutions

Example 2. Let . From (2) and (3) we have

J,(w)#0 (8)

k#3,7,23,43,67,463

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (272)
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P,jP** +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 464 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP** +k—j(j=1,--,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

@)
o=I1P

where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q =1,---,P-1

J=1
i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(464)" " ¢" (w) log" N )

7,(N,2) =HPS N:jpP* +k—j:prime}‘ ~

H) =TI(P-1)
k=3,517,59,233

where

Example 1. Let
J,(w)=0

. From (2) and(3) we have

@
We prove that for k=3,5,17,59,233

k#3,517,59,233

(1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k#3,517,59,233

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (273)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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. 466 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
- 466 .o
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =TI[P=1- x(P)] (2)

w=I11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q=1,---,P-1

J=1

i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(466) "' ¢" (w) log" N )

7,(N,2) =‘{PS N: jP* +k—j:prime}‘ ~

| o) =1I(P-1)
k =3,467

wher

Example 1. Let
J,(w)=0

. From (2) and(3) we have

7

We prove that for k=3,467
k+3,467

, (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 (2)
We prove that for k # 3,467
The New Prime theorem (274)

(1) contain infinitely many prime solutions

P,jP*® +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 468 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP468+k—j(j=1=""k_1) D

contain infinitely many prime solutions or no prime solutions.
Proof. We have Jiang function [1,2]
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Jy(@) =T[P=1-x(P)] (2)
m:gP

where , X (P) is the number of solutions of congruence

ﬁ[jq%g +k-j]=0 (modP),q=1,--,P-1
i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have
D)

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
k=1 4k k
(468)" " ¢" (w) log" N )

7 (N.2)=[{P<N: jP*" +k—j = prime}| ~

P) =TI(P-1)
k=3,5,7,13,19,37,53,79,157

where

Example 1. Let . From (2) and(3) we have

J2(@) =0 €
We prove that for K =357:13,19,37,53,79,157

k#3,5,7,13,19,37,53,79,157

(1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 ()

k#3,5,7,13,19,37,53,79,157

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (275)
P,jP" +k— j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
- 5470 .

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]

Jy(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o

w=11P

P

where , X (P) is the number of solutions of congruence
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k1
H[qu +k—j]50 (mod P),q =1,---,P—1

7=l 3)
if X(P)SP =2 gon from (2) and (3) we have
J,(w)#0 (4

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
k-1

7 (N.2)=[{P<N: jP7 + k= j = prime]| ~ S@o N

(470)"" ¢"(w) log" N )

w)=I1(P-1

where @) P ( ) .
Example 1. Let k=311 . From (2) and(3) we have
S (@) =0 )

We prove that for k=31 1, (1) contain no prime solutions.

Example 2. Let k#3,11 . From (2) and (3) we have
J,(w)#0 (8)

k=3,11

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (276)
P,jP " +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P’jP472+k_j(j:1’...’k—1) (1>

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- 7(P)]

(2
w=I11P
where po, X (P) is the number of solutions of congruence
k-1
nl[qu +k=j]|=0 (mod P),q=1,---,P-1
7= (3)
i X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 @)
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We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(w)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(5

then we have asymptotic formula [1,2]
J (o)™ N
472)""'¢" (w) log" N )

7,(N,2) =‘{PS N: jP*"? +k—j:prime}‘ ~

#) =TI(P-1)
k=3,5

where

Example 1. Let . From (2) and(3) we have

J,(0)=0 7

We prove that for k=35
Example 2. Let k>5 . From (2) and (3) we have
J,(w)#0

, (1) contain no prime solutions.

(8

We prove that for k>5 , (1) contain infinitely many prime solutions

The New Prime theorem (277)
P,jP " +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P,jP474+k—j(j=1,"',k—1) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- £(P)]

(2)
w=1I1P
where po, X (P) is the number of solutions of congruence
k-1
H][qu +k=j]|=0 (mod P),q=1,---,P-1
7= (3
it X(P)SP=2 en from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J (o)™ N

7, (N,2) =‘{PS N:jpP*™ +k—j:prime}‘ ~

k=1 gk k
(474)" ¢"(w) log" N )
w)=1I(P-1
where ) P ( ) .
Example 1. L k=37
ple 1. Let . From (2) and(3) we have
J2(@) =0 €
We prove that for k=37 , (1) contain no prime solutions.
k#3,7

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k#3,7

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (278)
P,jP " +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 476 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jPY +k—j(j=1,,k-1)

(D
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P
(@) =T[P-1-7(P) o
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg" +k-j|=0 (mod P),q =1,---,P-1
J=1 (3
it X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
Lo N
7 (N.2)=[{P<N: jPY + k= j = prime]| ~ (@) !
(476)" ¢"(w) log" N 6
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| ) =TI(P-)
k=3,5,29,239

wher

Example 1. Let . From (2) and(3) we have

J2(@) =0 €
We prove that for k=3,5,29,239 , (1) contain no prime solutions.

Example 2. Let k#3,5,29,239 . From (2) and (3) we have

J,(w)#0 ()
We prove that for k#3,5,29,239 , (1) contain infinitely many prime solutions

The New Prime theorem (279)
P,jP " +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
P k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P’jP478+k_j(j:1’...’k—1) (1>

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P=1- £(P)]

(2)
w=I1P
where p, X (P) is the number of solutions of congruence
k-1
M| jg™ +k=j|=0 (mod P),q=1,--,P—1
= (3
it X(P)SP =2 4en from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7, (N,2)= HP <SN: PP +k—j= prime}‘ ~ 2(fi)lwk y
(478) ¢" (w) log" N )

. A@)=TI(P-1)
k=3,479

wher

Example 1. Let . From (2) and(3) we have
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J2(@) =0 €

We prove that for k=3,479 , (1) contain no prime solutions.

Example 2. Let k#3,479 . From (2) and (3) we have

J,(w)#0 (2)
k#3,479 ’

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (280)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P,jP480+k—j(j=1,"',k—1) (1)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jr(@) =TP=1-2(P)] o
where “= 11—’1 P , X (P) is the number of solutions of congruence
’ﬁl[qu +k—j} =0 (modP),q=1,---,P—1

7=l 3)
it X(P)SP=2 on from (2) and (3) we have
J,(w)#0 (4

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 yen from (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
k-1
7 (N.2)=[{P<N: jP™ + k= j = prime]| ~ S@o N
(480)" ¢"(w) log" N )

#) =TI(P-1)

Example 1. Let k=3,571113,17,31,61,241 . From (2) and(3) we have
S (@) =0 7
k=3,571113,17,31,61,241

Example 2. Let k#3,5,7,11,13,17,31,61,241 . From (2) and (3) we have
J,(w)#0 (2)

where

We prove that for , (1) contain no prime solutions.
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k+3,5711,13,17,31,61,241

We prove that for (1) contain infinitely many prime solutions

The New Prime theorem (281)

P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 482 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP482+k—j(j=1=""k_1) D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o
where po, X is the number of solutions of congruence
k-1

H[jq482 +k—j]50 (mod P),q =1,---,P—1

J=1

(3

if X(P)SP=2 4on from (2) and (3) we have
J,(w)#0 0
We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP™ + k= j = prime]| ~ (@) !
(482)" ¢"(w) log" N )

where Ho) = IZ’I(P b .

Example 1. Let k=3 From (2) and(3) we have
J,(0)=0 (7

we prove that for k=3 , (1) contain no prime solutions
Example 2. Let k>3 . From (2) and (3) we have
J,(w)#0 (8)

We prove that for k>3 (1) contain infinitely many prime solutions

The New Prime theorem (282)
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P,jP** +k—j(j=1,-,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 434 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
P,jP** +k—j(j=1,-,k=1)
contain infinitely many prime soluti(;ns and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(D

@)
o=I1P

where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q=1,---,P-1

J=1
i X(P)SP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

" J,(w)#0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J (o)™ N
(484) "' ¢" (w) log" N )

7,(N,2) =HPS N:jpP*™ +k—j:prime}‘ ~

| Ho)=1I(P-1)
k=3,11,23

wher

Example 1. Let
J,(w)=0

. From (2) and(3) we have

7

We prove that for k=3,11,23
k#3,11,23

(1) contain no prime solutions.

Example 2. Let
J,(w)#0

. From (2) and (3) we have

(8

k+3,11,23

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (283)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
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. 1486 ]
Using Jiang function we prove that JP k=] contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
P,jP486+k—j(j=1a"'ak_1)_ D

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

J,(@)=TI[P-1- 7(P)]

2)
w=I1P
where P, X (P) is the number of solutions of congruence
k-1
Hl[qu +k—j] =0 (modP),q=1,---,P—1
N 3)

ir X(P)SP =2 on from (2) and (3) we have
J,(w)#0 0
We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 yen from (2) and (3) we have

JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7, (N,2) = ‘{P <SN:jP* +k—j= prime}‘ ~ z(i{)lwk y
(486)" ¢"(w) log" N )

| ) =1I(P-)
k=3,7,19,163,487

wher

Example 1. Let . From (2) and(3) we have

Jo(@) =0 @)
We prove that for k=3,7,19,163,487 , (1) contain no prime solutions.

Example 2. Let k#3,7,19,163,487 . From (2) and (3) we have

J,(w)#0 ()
We prove that for k#3,7,19,163,487 (1) contain infinitely many prime solutions

The New Prime theorem (284)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
PajP488+k_j(j:1""’k_1) (1)
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contain infinitely many prime solutions or no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =TP~1-2(P)] o
where “= II—’I P , X (P) is the number of solutions of congruence
lﬁl[jq“gg +k—j} =0 (modP),g=1,---,P-1

j=1 (3)
i X(P)SP=2 4on from (2) and (3) we have
J,(w)#0 (4)

We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]

J,(w)o"™ N

7 (N.2)=[{P<N: jP™ +k = j = prime]| ~

P=Y: k
(488) ¢ (w) log" N )
w)=II(P-1
where ) P( )
Example 1. L k=3,5
ple 1. Let . From (2) and(3) we have
Jo(@) =0 @)

k=35

We prove that for (1) contain no prime solutions.

Example 2. Let k>5 . From (2) and (3) we have
J,(w)#0 ()

We prove that for k>5 (1) contain infinitely many prime solutions

The New Prime theorem (285)
P,jP* +k—j(j=1,--k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
- 5490 .
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =T1[P=1-x(P)] (2)

o=I1P

where po, X (P) is the number of solutions of congruence
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k-1

H[jq‘“’o +k—j]50 (mod P),q =1,---,P—1

J=1 (3
if X(P)SP =2 gon from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
JZ (0)) = O (5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP* + k= j = prime]| ~ 2 ;

(490) ¢"(w) log" N )

) =T1(P-1

where ) P ( ) .
Example 1. Let k=3,11,71,491 . From (2) and(3) we have
J2(@) =0 €
We prove that for k=3,11,71,491 , (1) contain no prime solutions.
Example 2. Let k#3,11,71,491 . From (2) and (3) we have
J,(w)#0 (2)

k#3,11,71,491

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (286)
P,jP” +k—j(j=1,--,k—-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5492 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
i p492 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J,(@)=TI[P-1- 7(P)]

(2
w=I11P
where po, X (P) is the number of solutions of congruence
k-1
H][qu +k=j]|=0 (mod P),q=1,---,P-1
7= (3)
i X(P)SP =2 4on from (2) and (3) we have
J,(w)#0 @)
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We prove that (1) contain infinitely many prime solutions.

it X(P)=P =1 en from (2) and (3) we have

J(0)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
k-1

7, (N,2)= ‘{P <SN: P +k—j= prime}‘ ~ Jz(i{)lwk ]Z]

(492)" ¢"(w) log" N )
where 2@ =TIP=1)
Example 1. Let k=3,57,13,83 . From (2) and(3) we have
Jo(@)=0 @)
We prove that for k=3,5,7,13,83 , (1) contain no prime solutions.
Example 2. Let k#3,5,7,13,83 . From (2) and (3) we have
J,(w)#0 (2)

k#3,57,13,83

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (287)
P,jP** +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5494 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.

P,jP494+k—j(j=1=""k_1)’

QP!

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
J(w)=I[P-1-y(P

(@) =T[P-1- 7(P) o

w=11P

where P, X (P) is the number of solutions of congruence
k-1
Hl[jq‘“” +k=j]|=0 (mod P),q=1,---,P-1
J= (3
i X(P)SP =2 gen from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)

We prove that (1) contain no prime solutions [1,2]
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If £ (@) #0 then we have asymptotic formula [1,2]

J (o)™ N

7, (N,2) =‘{PS N:jP™ +k—j:prime}‘ ~

k=1 gk k
(494)" ¢"(w) log" N 6
w)=II(P-1
where H@) P ( ) .
Example 1. Let k=3 From (2) and(3) we have
J,(0)=0 (7

We prove that for k=3 , (1) contain no prime solutions.

Example 2. Let k>3 . From (2) and (3) we have

J,(w)#0 ()

We prove that for k>3 , (1) contain infinitely many prime solutions

The New Prime theorem (288)
P, jP* +k— j(j=1,k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP k-]

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.
Theorem. Let k be a given odd prime.
Pajp4%+k—j(j:1a"'ak_1)’ QD)

contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@)=TI[P-1- 7(P)]

(2)
w=11P
where p, X (P) is the number of solutions of congruence
k-1
M| jg* +k-j|=0 (mod P),q =1,---,P-1
J=1 (3
it X(P)SP=2 4en from (2) and (3) we have
J,(w)#0 (4
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 en from (2) and (3) we have
J,(@)=0 (5)
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N
7 (N.2)=[{P<N: jP* + k= j = prime]| ~ e :
(496)" ¢"(w) log" N 6

where o) = I;I(P b .
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Example 1. Let k=3,517 . From (2) and(3) we have

J2(@) =0 €
We prove that for k=3,517 , (1) contain no prime solutions.

Example 2. Let k#3,517 . From (2) and (3) we have

J,(w)#0 (2)

k#3,517

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (289)
P,jP* +k—j(j=1,--,k=1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract

. 5498 .
Using Jiang function we prove that JP +k—J
solutions.

contain infinitely many prime solutions and no prime

Theorem. Let k be a given odd prime.
i p498 / | — cee —
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]
Jy(@)=TI[P-1- 7(P)]

(2)
w=1I1P
where p, X (P) is the number of solutions of congruence
k-1
M| jg** +k=j|=0 (mod P),q=1,--,P—1
= 3
it X(P)SP =2 on from (2) and (3) we have
J,(w)#0 (4)
We prove that (1) contain infinitely many prime solutions.
it X(P)=P =1 yen from (2) and (3) we have
JZ (0)) = O ( 5 )
We prove that (1) contain no prime solutions [1,2]
If £ (@) #0 then we have asymptotic formula [1,2]
J N

7 (N.2)=[{P<N: jP* +k = j = prime]| ~ (@) .

(498)" ¢" (w) log" N )

w)=1I(P-1

where @) P ( ) .
Example 1. Let k=3,7,167,499 . From (2) and(3) we have
Jo(@) =0 @)

k=3,7,167,499
k#3,7,167,499

We prove that for , (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have
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J,(w)#0 ()

k#3,7,167,499

We prove that for , (1) contain infinitely many prime solutions

The New Prime theorem (290)
P,jP* +k—j(j=1,--k-1)
Chun-Xuan Jiang
Jiangchunxuan@vip.sohu.com

Abstract
JP” +k—j

Using Jiang function we prove that contain infinitely many prime solutions and no prime

solutions.

Theorem. Let k be a given odd prime.
P’jPSOO+k_j(j:1’...’k—1)’ (1>
contain infinitely many prime solutions and no prime solutions.
Proof. We have Jiang function [1,2]

Jy(@) =T[P=1-x(P)] (2)

w=I1P
where po, X (P) is the number of solutions of congruence
k-1
M| jg* +k=j]=0 (mod P),q=1,---,P-1

J=1

i X(P)sP=2
J,(w)#0

We prove that (1) contain infinitely many prime solutions.
ir X(P)=P =1 yen from (2) and (3) we have
J(0)=0

We prove that (1) contain no prime solutions [1,2]

g (@) #0

(3
then from (2) and (3) we have

4

(5

then we have asymptotic formula [1,2]
J,(w)o"™ N
(500) "' ¢* (@) log* N )

7. (N,2)= HP <N P4 f—j= prime}‘ ~

| o) =TI(P-)

wher .
k=3,511101,251

Example 1. Let
J,(w)=0

. From (2) and(3) we have

D
k=3,511,101,251

k#3,511,101,251

We prove that for , (1) contain no prime solutions.

Example 2. Let . From (2) and (3) we have

J,(w)#0 ()

k#3,511,101,251

We prove that for , (1) contain infinitely many prime solutions

Jn+1 (0))

Remark. The prime number theory is basically to count the Jiang function and Jiang prime k -tuple
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A R Y (/A P
¢ ()

o()= P P

=I1I|1
P

singular series

numbers. The prime distribution

[1,2], which can count the number of prime

is not random. But Hardy-Littlewood prime k -tuple singular series

oty =T1[ 1-Y ) )= Ly
d P P is false [3-17], which cannot count the number of prime numbers[3].
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