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Theorem 1.

d(x)=d(x+1)=d(x+2)=2 infinitely-often. (D

d(x)=21,d(3) =1 ~
where d(x) represents the number of distinct prime factors of X, P , d(15) =2 ,
d(105)=3
Proof (see[1] p.146 theorem 3.1.154). Prime equations are
p,=10p, +1, py=15p, +2, p,=6p, +1 2)
We have Jiang function
4@m=3£gp—®¢o’ o
w=11P
where 2<P
We prove that I (@) =0 there exist infinitely many primes l§ such that b , B , b are primes.
We have asymptotic formula
J
7,(N.2)=|[{P < N:10R, +1,15P, +2, 6P, +1} ~ (@) N
¢ (w) log" N ’ 4

Hw)=T1(P-1)

From (2) we have 3p, +1=30p, +4:2p3, 3p, +2=30p, +5:5p4. We prove that there exist

infinitely many triples of consecutive integers, each being the products of two distinct primes.
Theorem 2.

d(x)=d(x+1)=d(x+2)=m>1

where

infinitely-often (5
Proof (see [1] p.148, theorem 3.1.158). Suppose that u,u+l and U T 2 are three consecutive integers, each

being the products of /7 -1 distinct primes. Let M =ulu+1)(u+2) . We define the three prime equations
2M 2M 2M
P=—PFP+1 P = P+1 P=——F+1
u , u+l , u+2 (6)

Using Jiang function b (@) we prove that there exist infinitely many primes l§ such that B , B and

4 are primes.
From (6) we have
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uP, +1=2MP +u+1=u+1) 2—MP1 +1|=w+DA
uP, =2MPF, +u u+l

uP, +2 =2MP, +u+2=(u+2)(2—MzPl +1j=(u+2)P4
u+

We prove

dx)=dx+1)=d(x+2)=m>1 infinitely-often. D
Theorem 3.

dx)=d(x+2)=d(x+4)=2 infinitely-often 3

Proof [1,2,3]. Prime equations are

P, =70P +1, P,=42P +1, P, =30P +1 )

Using Jiang function Iy (@) we prove that there exist infinitely many primes l§ such that b , & and

4 are primes.
Frome (9) we have

3P, =210P, +3, 3P, +2=210P +5=5(42P, +1)=5P,
3P, +4=210P, +7=730P, +1) =P,

(100
We prove
d(3P,)=d(P,+2)=d(3P, +4)=2 infinitely-often. an
Theorem 4.
dx)=d(x+2)=d(x+4)=m>1 infinitely-often. (12)

Proof [1, 2, 3]. Suppose that u,u+2 and U +4 are three odd integers, each being the products of m—1
distinct primes. Let M =ulu+2)(u+4)
We define three prime equations

Pzzzﬂpl+l P3=2MPI+1 P4=2—MPI+1
u ’ u+2 , u+4 (13)
Using Jiang function b (@) we prove that there exist infinitely many primes l§ such that b , B and
¥ are primes.
From (13) we have uby =2MR +u ,
=(u+2) 2ﬂP1 +1|=u+2)P
uP, +2 =2MPF +u+2 u+?2
uP, +4=MP, +u+4= (u+4)(2—MP1 +1)J
u+4 =+, (14)
We prove
dx)=d(x+2)=d(x+4)=m>1 infinitely-often. (15)
Theorem 5.
dx)=dx+1)=d(x+2)=d(x+4)=m>1 infinitely-often. (16)
Proof. From (9) we have prime equations
P,=T0R+1 P,=105R+2 P, =42R+1 P, =30P +1 (17
Using Jiang function we prove there exist infinitely many primes l§ such that b , P3, b and € are
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primes.
From (17) we have

3P, =210P, +3
3P, +1=210P +4=2(105P, +2) = 2P,
3P, +2=210P, +5="5(42P, +1) = 5P,

3P, +4=210P,+7=730P, +1) =P,

Using Jiang function we prove

d(x)=d(x+1)=d(x+2)=d(x+4) =m >1

d(x)=d(x+1)=d(x+2)=d(x+4) =d(x+8) =d(x +10) = m > 1

Q20

Using Jiang function J,(®) we are able to prove

d(x)=d(x+n)=m>1

infinitely-often.

dx)=d(x+5-3)=d(x+7-3)=-=d(x+P-3)=m>1
d(x)=d(x+n<6)=2

Goldston et. al prove only
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Q2D
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