Twin prime conjecture and Goldbach Conjecture

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China jcxuan@sina.com

Abstract: Using Jiang function we prove that there exist infinitely many primes P_1 such that $aP_1 + b$ is prime We prove twin prime conjecture and Goldbach conjecture.

[Chun-Xuan Jiang. **Twin prime conjecture and Goldbach Conjecture.** Rep Opinion 2016;8(10):105-106]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 11. doi:10.7537/marsroj081016.11.

Keywords: prime; theorem; function; number

Theorem

$$P_2 = aP_1 + b.(a,b) = 1, \quad 2|ab,$$
 (1)

There exist infinitely many primes P_1 such that P_2 is prime.

Proof. We have Jiang function [1,2]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)],$$
 (2)

where

$$\omega = \prod_{p} P$$

 $\chi(P)$ is the number of solutions of congruence

$$aq + b \equiv 0 \pmod{P},\tag{3}$$

$$q=1,\cdots,P-1$$
.

From (3) we have if $P \mid ab$ then $\chi(P) = 0$, $\chi(P) = 1$ otherwise.

From (3) and (2) we have

$$J_2(\omega) = \prod_{3 \le P} (P - 2) \prod_{P|ab} \frac{P - 1}{P - 2} \neq 0.$$
 (4)

We prove that there exist infinitely many primes P_1 such that P_2 is prime.

We have the best asymptotic formula [1, 2]

$$\pi_{2}(N,2) = \left| \left\{ P_{1} \leq N : aP_{1} + b = prime \right\} \right| \sim \frac{J_{2}(\omega)\omega}{\phi^{2}(\omega)} \frac{N}{\log^{2} N}$$

$$= 2 \prod_{3 \leq P} \left(1 - \frac{1}{(P-1)^{2}} \right) \prod_{P \mid ab} \frac{P-1}{P-2} \frac{N}{\log^{2} N}. \tag{5}$$

where $\phi(\omega) = \prod_{P} (P-1)$.

Twin primes theorem [1]. Let a = 1 and b = 2. From (1) we have

$$P_2 = P_1 + 2 (6)$$

From (4) we have

$$J_2(\omega) = \prod_{P} (P - 2) \neq 0 \tag{7}$$

We prove that there exist infinitely many primes P_1 such that $P_1 + 2$ is prime. From (5) we have

$$\pi_2(N,2) = \left| \left\{ P_1 \le N : P_1 + 2 = prime \right\} \right| \sim 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \frac{N}{\log^2 N}. \tag{8}$$

Goldbach theorem [1]. Let a = -1 and b = N. From (1) we have

$$N = P_1 + P_2 \tag{9}$$

From (4) we have

$$J_2(\omega) = \prod_{3 \le P} (P - 2) \prod_{P \mid N} \frac{P - 1}{P - 2} \neq 0$$
 (10)

We prove that every even number $N \ge 6$ is the sum of two primes. From (5) we have

$$\pi_2(N,2) = \left| \left\{ P_1 \le N : N - P = prime \right\} \right| \sim 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \prod_{P \mid N} \frac{P-1}{P-2} \frac{N}{\log^2 N}$$
 (11)

Note: This article has been published as [Chun-Xuan Jiang. **Twin prime conjecture and Goldbach Conjecture.** *Academ Arena* 2015;7(1s):1-2]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 1

Author in US address:

Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Institute for Basic Research Palm Harbor, FL 34682, U.S.A.

Reference

- [1] Chun-Xuan Jiang, On the Yu-Goldbach prime theorem (Chinese), Guangxi Science, 3 (1996) 9-12.
- [2] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. (http://www. wbabin.net/math/xuan2.pdf) (http://vixra.org/pdf/0812.0004v2.pdf).
- [3] Chun-Xuan Jiang. Automorphic Functions And Fermat's Last Theorem (1). Rep Opinion 2012;4(8):1-6]. (ISSN: 1553-9873). http://www.sciencepub.net/report/report/0408/001_10009report0408_1_6.pdf.
- [4] Chun-Xuan Jiang. Jiang's function $J_{n+1}(\omega)$ in prime distribution. Rep Opinion 2012;4(8):28-34]. (ISSN: 1553-9873). http://www.sciencepub.net/report/report/0408/007_10015report0408_28_34.pdf.
- [5] Chun-Xuan Jiang. The Hardy-Littlewood prime *k*-tuple conjecture is false. *Rep Opinion* 2012;4(8):35-38]. (ISSN: 1553-9873). http://www.sciencepub.net/report/report/report/0408/008 10016report0408 35 38.pdf.
- [6] Chun-Xuan Jiang. A New Universe Model. Academ Arena 2012;4(7):12-13] (ISSN 1553-992X). http://sciencepub.net/academia/aa0407/003 10067aa0407 12 13.pdf.
- [7] [Chun-Xuan Jiang. **Twin prime conjecture and Goldbach Conjecture.** Academ Arena 2015;7(1s):1-2]. (ISSN 1553-992X). http://www.sciencepub.net/academia. 1

4/25/2015