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Abstract: The problem of locating roots of nonlinear equations (or zeros of functions) occurs frequently in scientific 
work. In this paper, we have introduced some techniques for solving nonlinear equations. The techniques were based 
on the central-difference and forward-difference approximations to derivatives. We have shown that that three of the 
four methods have cubic convergence and another method has quadratic convergence. The introduced methods can be 
used for solving nonlinear equations without computing derivatives. Meanwhile, the methods introduced in this paper 
can be used to more class of nonlinear equations. The numerical examples shown in this paper illustrated the 
efficiency of the new methods. We used the well known software MATLAB 7 to calculate the numerical results 
obtained from the proposed techniques.  
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1.1 Introduction  

The relaxed Newton’s method modifies the 
classical Newton’s method with a parameter in such a 
way that when it is applied to a polynomial with 
multiple roots and we take as parameter one of these 
multiplicities, the order of convergence to the related 
multiple root is increased. For polynomials of degree 
three or higher, the relaxed Newton’s method may 
possess extraneous attracting (or even super-attracting) 
cycles.1 The eighth chapter presents some algorithms 
and implementations that allow us to compute the 
measure (area or probability) of the basin of a p-cycle 
when it is taken in the Riemann sphere. We quantify 
the efficiency of the relaxed Newton’s method by 
computing, up to a given precision, the measure of the 
different attracting basins of non-repelling cycles. In 
this way, we can compare the measure of the basins of 
the ordinary fixed points (corresponding to the 
polynomial roots) with the measure of the basins of the 
point at infinity, and the basins of other non-repelling 
p-cyclic points for p > 1: The aim of the ninth chapter is 
to provide an overview of theoretical results and 
numerical tools in some iterative schemes to 
approximate solutions of nonlinear equations.2 We 
examine the concept of iterative methods and their 
local order of convergence, numerical parameters that 
allow us to assess the order, and the development of 
inverse operators (derivative and divided differences). 
We also provide a detailed study of a new 

computational technique to analyze efficiency. Finally, 
we end the chapter with a discussion on adaptive 
arithmetic to accelerate computations.3 

Most of the real life-problems are non-linear in 
nature therefore it is a challenging task for the 
mathematician and engineer to find the exact solution 
of such problems. In this reference, a number of 
methods have been proposed/implemented in the last 
two decades. Analytical solutions of such non-linear 
equations are very difficult, therefore only numerical 
method based iterative techniques are the way to find 
approximate solution. In the literature, there are some 
numerical methods such 
as Bisection, Secant, Regula-Falsi, Newtonphson, Mul
lers methods, etc., to calculate an approximate root of 
the non-linear transcendental equations. It is well 
known that all the iterative methods require one or 
more initial guesses for the initial approximations.4 

In Regula-Falsi method, two initial guesses are 
taken in such a way that the corresponding function 
values have opposite signs. Then these two points are 
connected through the straight line and next 
approximation is the point where this line intersect 
the x-axis. This method gives guaranteed result but 
slow convergence therefore several researchers have 
improved this standard Regula-Falsi method into 
different hybrid models to speed up the convergence. 
Thus previously published works have 
revised/implemented Regula-Falsi method in several 
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ways to obtain better convergence. However, it is 
found that modified form of Regual-Falsi method 
becomes more complicated from computational point 
of view.5 Therefore, in the present work Regual-Falsi 
method has been used as its standard form with 
Newton–Raphson method and found better 
convergence. Newton–Raphson method is generally 
used to improve the result obtained by one of the above 
methods. This method uses the concept of tangent at 
the initial approximation point. The next approximate 
root is taken those value where the tangent intersect 
the x-axis. So this method fails where tangent is 
parallel to x-axis, i.e. the derivative of the function is 
zero or approximately zero. The order of convergence 
of Newton–Raphson method is two, therefore it 
converges very rapidly than other methods (Bisection, 
Regula-Falsi, etc.). However it does not always give 
guaranteed root. Many scientists and engineers have 
been proposed different hybrid models on 
Newton–Raphson method.6 

It is clear from the survey, that the most of new 
algorithms are either based on three classical methods 
namely Bisection, Regula-Falsi and Newton–Raphson 
or created by hybrid processes. In the present work, the 
proposed new algorithm is based on standard 
Regula-Falsi and Newton–Raphson methods, which 
provides guaranteed results and higher order 
convergence over Regula-Falsi method. The new 
proposed algorithm will work even the first derivative 
equals to zero where Newton–Raphson method fails.7 

A large number of papers have been written about 
iterative methods for the solution of the nonlinear 
equations [3, 7, 8, 9, 10, 12, 13]. In this paper, we 
consider the problem of finding a simple root x∗ of a 
function f: D ⊂ R → R i.e., f (x∗) = 0 and f 0 (x∗) 6= 0. 
The famous Newton’s method for finding x∗ uses the 
iterative method: 

xn+1 = xn − f (xn)  
f 0 (xn), REplace ’ 

Newton’s Raphson method is a very simple and 
elegant technique to find out the roots of a wide variety 
of the problems. But it has a drawback that it may fail if 
the derivative is approaching to zero near the root or 
the initial guess is not proper. In this work an 
alternative to Newton’s method is presented by the 
authors. 8 

One of the most studied problems in Numerical 
Analysis is the approximation of nonlinear equations. 
A powerful tool is the use of iterative methods. It is 
well-known that Newton’s method, 

Most used iterative methods to approximate the 
solution x of F.x/ D 0. The quadratic convergence and 
the low operational cost of Newton’s method ensure 
that it has a good computational efficiency. If we are 
interesting in methods without using derivatives, then 
Steffensen-type methods will be a good alternative. 
These methods only compute divided differences. 9 
1.2 A Family of New Algorithms 

Two different classes of iteration techniques to 
find the roots are presented. 10 

1.2.1 Consider the equation f (x) = 0 whose roots 

are to be found. Let   be the exact root and x0 be the 
initial guess known for the required root. Assume the 
first approximation to the required root as x1 = x0 + h, 
where h is very small. 

1.2.1(a) Consider the following auxiliary 
equation with a parameter p 

0)()()()( 222
0

2  xfxfxxpxg
 …(1.1) 

where p  R and 
p

< ∞. The root of f (x) will 
also be a root of equation (1.1) and vice versa. Since x 
= x1 = x0 + h is an approximation of the required root, 
therefore equation (1.1) gives, 

p2 h2 f 2 (x0 + h) – f 2 (x0 + h) = 0,   
Expanding by Taylor’s theorem (retaining the 

terms up to O ( h2) and excluding the term containing 
second derivative) 
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To avoid the loss of significant errors implicit in this formula, numerator is rationalized to obtain the formula, 
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In this the sign is so chosen to make the denominator largest in magnitude. The first approximation to the 

required root is given by,  

x1 = x0 
)()('
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,        
Therefore, the successive approximations are given by,  

xn+1 = xn
)()('

)(
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n
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, n = 0, 1…    …(1.3) 
 
The parameter p is chosen such that the 

corresponding function p f (xn) and 
f 

(xn) have the 
same signs, so as to make the denominator largest 
possible. Letting p → 0 in equation (1.3), reduces to 
Newton’s formula. 

1.2.1 (b) When an auxiliary equation of the 
following form is assumed,  

0)()()()( 2
0

2  xfxfxxpxg
  (1.4) 

where p   R, the root of the equation f (x) = 0 is 
also the root of equation (1.4). Putting x = x1 = x0 + h in 
equation (1.4) and proceeding as in section 1.2.1 (a) 
general formula for successive approximation is given 
by, 

 xn+1 = xn 

)(4)(')('

)(2
222

nnn

n

xfpxfxf

xf




, n = 0, 
1    ……(1.5) 

The sign should be so chosen so as to the 
denominator is largest in magnitude. Again equation 
(1.5), reduces to Newton’s formula, if p → 0. 11 
1.3 Convergence Analysis 

Let   is a root of
0)( xf

. An 

approximation of the root is given by nn ex 
, 

where en is error. Using Taylor’s series, expansions of 

)( nxf
 and 

)(
n

xf 
 given by equations (2.9) and 

(2.10), one gets, 12 
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Also  
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Equations (1.5), can be rewritten as, 
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Using equations (1.6) and (1.7) in equations (1.8), one gets, 
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which shows that the technique is quadratically convergent for each pR. Similarly, sequence {xn} generated by 

iteration formula (1.3), with parameter p, can be proved to be at least quadratically convergent.  
 
 

Table 1. Comparison of equation (1.5) with Newton’s method. 

 
 
 
1.4 Numerical Examples 

A comparison of the formula proposed in section 
1.2.1(b) with Newton’s method is presented in Table 
1.1 with the help of various examples. The formulae of 
section 1.2.1(b) are tested for p=1. The termination 

criterion is taken as 
)(xf

 < 1.0 x 10-11. 13,14 

 
1.5 Conclusions 

The problem of locating roots of nonlinear 
equations (or zeros of functions) occurs frequently in 
scientific work. In this paper, we have introduced some 
techniques for solving nonlinear equations. The 
techniques were based on the central-difference and 
forward-difference approximations to derivatives. We 
have shown that that three of the four methods have 
cubic convergence and another method has quadratic 
convergence. The introduced methods can be used for 
solving nonlinear equations without computing 

derivatives. Meanwhile, the methods introduced in this 
paper can be used to more class of nonlinear equations. 
The numerical examples shown in this paper illustrated 
the efficiency of the new methods. We used the well 
known software MATLAB 7 to calculate the numerical 
results obtained from the proposed techniques.  

From Table 1.1, it is observed that the formula 
(1.5) can be used as an alternative to Newton’s 
technique, for the problems for which the latter fails or 
diverges. 
 
Corresponding author: 
Mrs. Geeta Arora  
Research Scholar, Department of Mathematics,  
OPJS University, Churu, 
Rajasthan (India) 
Contact No. +91-9518073997 
Email: saprageetu87@gmail.com  
 



 Report and Opinion 2020;12(2)           http://www.sciencepub.net/report   ROJ 

 

32 

References: 
1 V. Alarcón, S. Amat, S. Busquier and D.J. López, 

A Steffensen’s type method in Banach spaces with 
applications on boundary-value problems. J. 
Comput. Appl. Math., 216 (2008), 243–250.  

2 S. Amat, S. Busquier and J. M. Gutiérrez, 
Geometric constructions of iterative functions to 
solve nonlinear equations. J. Comput. Appl. 
Math., 157 (2003), 197–205.  

3 K.E. Atkinson, An Introduction to Numerical 
Analysis, second ed., John Wiley & Sons, New 
York (1989).  

4 D. Chen, On the convergence of a class of 
generalized Steffensen’s iterative procedures and 
error analysis. Int. J. Comput. Math., 31 (1989), 
195–203. 

5 C. Chun, A geometric construction of iterative 
functions of order three to solve nonlinear 
equations. Comput. Math. Appl., 53 (2007), 
972–971. 

6 S.D. Conte and C. de Boor, Elementary Numerical 
Analysis: An Algorithmic Approach, 3rd edition, 
McGraw-Hill, Auckland (1986).  

7 M. Dehghan and M. Hajarian, On some cubic 
convergence iterative formulae without 

derivatives for solving nonlinear equations. 
Communications in Numerical Methods in 
Engineering, in press.  

8 M. Dehghan and M. Hajarian, New iterative 
method for solving non-linear equations with 
fourth-order convergence. Int. J. Comput. Math., 
in press.  

9 M. Frontini and E. Sormani, Modified Newton’s 
method with third-order convergence and multiple 
roots. J. Comput. Appl. Math., 156 (2003), 
345–354. 

10 H.H.H. Homeier, On Newton-type methods with 
cubic convergence. J. Comput. Appl. Math., 176 
(2005), 425–432. 

11 D. Kincaid and W. Cheney, Numerical Analysis, 
second ed., Brooks/Cole, Pacific Grove, CA 
(1996).  

12 J.M. Ortega and W.C. Rheinboldt, Iterative 
Solution of Nonlinear Equations in Several 
Variables. Academic Press (1975).  

13 A.Y. Özban, Some new variants of Newton’s 
method. Appl. Math. Lett., 17 (2004), 677–682.  

14 F.A. Potra and V. Pták, Nondiscrete induction and 
iterative processes. Research Notes in 
Mathematics, vol. 103, Pitman, Boston (1984). 

 
   

 
2/21/2020 


