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Abstract: The investigation of extreme events is extremely relevant for a range of disciplines in mathematical, natural, 
and social sciences and engineering. Understanding the large fluctuations of the system of interest is of great 
importance from a theoretical point of view, but also when it comes to assessing the risk associated with low 
probability and high impact events. In many cases, in order to gauge preparedness and resilience properly, one would 
like to be able to quantify the return times for events of different intensity and take suitable measures for preventing 
the expected impacts. Prominent examples are weather and climate extremes, which can have a huge impact on human 
society and natural ecosystems. The present uncertainty in the future projections of extremes makes their study even 
more urgent and crucial. 
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Introduction  

Statistics is concerned with the collection and 
analysis of data and with making estimations and 
predictions from the data. Typically two branches of 
statistics are discerned: descriptive and inferential. 
Inferential statistics is usually used for two tasks: to 
estimate properties of a population given sample 
characteristics and to predict properties of a system 
given its past and current properties. To do this, 
specific statistical constructions were invented. The 
most popular and useful of them are the average or 
mean (or more exactly, arithmetic mean) m and 
standard deviation s (variance s 2). To make 
predictions for future, statistics accumulates data for 
some period of time. To know about the whole 
population, samples are used. Normally such 
inferences (for future or for population) are based on 
some assumptions on limit processes and their 
convergence. Iterative processes are used widely in 
statistics. For instance the empirical approach to 
probability is based on the law (or better to say, 
conjecture) of big numbers, states that a procedure 
repeated again and again, the relative frequency 
probability tends to approach the actual probability. 
The foundation for estimating population parameters 
and hypothesis testing is formed by the central limit 
theorem, which tells us how sample means change 
when the sample size grows. In experiments, scientists 
measure how statistical characteristics (e.g., means or 
standard deviations) converge (cf., for example, [23, 
31]). Convergence of means/averages and standard 

deviations have been studied by many authors and 
applied to different problems (cf. [1-4, 17, 19, 20, 
24-28, 35]). Convergence of statistical characteristics 
such as the average/mean and standard deviation are 
related to statistical convergence as we show in this 
section. 

Let m and c be the spaces of all bounded and 
convergent real sequences x = (xk) normed by x = supn 
|xn|, respectively. Let B be the class of (necessarily 
continuous) linear functional β on m which are 
nonnegative and regular, that is, if x ≥ 0, (i.e., xk ≥ 0 for 
∈all k  N:= {1, 2,...}) then β(x) ≥ 0, and β(x) = limk xk, 

∈for each x  c. If β has the additional property that 
∈β(σ(x)) = β(x) for all x  m, where σ is the left shift 

operator, defined by σ(x1, x2,...)=(x2, x3,...) then β is 
called a Banach limit. The existence of Banach limits 
has been shown by Banach [2,17,19], and another 
proof may be found in [3]. It is well known [21] that the 
space of all almost convergent sequences can be 

∈represented as the set of all x  m which have the same 
value under any Banach limit. In the research, we study 
some generalized limits so that the space of all 
bounded statistically convergent sequences can be 
represented as the set of all bounded sequences which 
have the same value under any such limit. It is proved 
that the set of such limits and the set of Banach limits 
are distinct but their intersection is not empty.  
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The Fibonacci sequence was firstly used in the theory 
of sequence spaces by Kara and Başarır [5]. Afterward, 
Kara [6] defined the Fibonacci difference matrix F̂ by 
using the Fibonacci sequence (fn) for n ∈ {0, 1, …} 
and introduced the new sequence spaces related to the 
matrix domain of F̂. 

Following [7] and [8], high quality papers have 
been produced on the Fibonacci matrix by many 
mathematicians [9]. 

In this paper, by combining the definitions of 
Fibonacci sequence and statistical convergence, we 
obtain a new concept of statistical convergence, which 
will be called Fibonacci type statistical convergence. 
We examine some basic properties of new statistical 
convergence defined by Fibonacci sequences. 
Henceforth, we get an analogue of the classical 
Korovkin theorem by using the concept of Fibonacci 
type statistical convergence. 

Estimation frequently requires iterative 
procedures: the more iterations, the more accurate 
estimates. But when are estimates accurate enough? 
When can iteration cease? My the rule has become 
"Convergence is reached when more iterations do not 
change my interpretation of the estimates". 

There is a trade-off between accuracy and speed. 
Greater accuracy requires more iterations - more time 
and computer resources. The specification of 
estimation accuracy is a compromise. Frequently, 
squeezing that last bit of inaccuracy out of estimates 
only affects the least significant digits of printed 
output, has no noticeable effect on model-data fit, and 
does not alter interpretation. Three numerical 
convergence rules are often employed: 
1.1. Convergence of Random Variables 

Convergence of random variables (sometimes 
called stochastic convergence) is where a set of 
numbers settle on a particular number. It works the 
same way as convergence anywhere else; For example, 
cars on a 5-line highway might converge to one 
specific lane if there’s an accident closing down four of 
the other lanes. In the same way, a sequence of 
numbers (which could represent cars or anything else) 
can converge (mathematically, this time) on a single, 
specific number. Certain processes, distributions and 
events can result in convergence— which basically 
mean the values will get closer and closer together. 

When Random variables converge on a single 
number, they may not settle exactly that number, but 
they come very, very close. In notation, x (xn → x) tells 
us that a sequence of random variables (xn) converges 
to the value x. This is only true if the absolute value of 
the differences approaches zero as n becomes infinitely 
larger. In notation, that’s: 

|xn − x| → 0 as n → ∞. 
What happens to these variables as they converge 

can’t be crunched into a single definition. Instead, 

several different ways of describing the behavior are 
used. 
1.2. Types of Convergence of Random 
Variables  

Convergence of Random Variables can be broken 
down into many types. The ones you’ll most often 
come across: 

Convergence in probability, 
Convergence in distribution, 
Almost sure convergence, 
Convergence in mean. 
Each of these definitions is quite different from 

the others. However, for an infinite series of 
independent random variables: convergence in 
probability, convergence in distribution, and almost 
sure convergence are equivalent (Fristedt & Gray, 
2013, p.272). 
1.3.1. Convergence in probability 

If you toss a coin n times, you would expect heads 
around 50% of the time. However, let’s say you toss 
the coin 10 times. You might get 7 tails and 3 heads 
(70%), 2 tails and 8 heads (20%), or a wide variety of 
other possible combinations. Eventually though, if you 
toss the coin enough times (say, 1,000), you’ll 
probably end up with about 50% tails. In other words, 
the percentage of heads will converge to the expected 
probability. 

More formally, convergence in probability can be 
stated as the following formula: 

 
Where: 
P = probability, 
Xn = number of observed successes (e.g. tails) in 

n trials (e.g. tosses of the coin), 
Lim (n→∞) = the limit at infinity — a number 

where the distribution converges to after an infinite 
number of trials (e.g. tosses of the coin), 

c = a constant where the sequence of random 
variables converge in probability to, 

ε = a positive number representing the distance 
between the expected value and the observed value. 

The concept of a limit is important here; in the 
limiting process, elements of a sequence become closer 
to each other as n increases. In simple terms, you can 
say that they converge to a single number. 
1.3.2. Convergence in distribution 

Convergence in distribution (sometimes called 
convergence in law) is based on the distribution of 
random variables, rather than the individual variables 
themselves. It is the convergence of a sequence of 
cumulative distribution functions (CDF). As it’s the 
CDFs, and not the individual variables that converge, 
the variables can have different probability spaces. 
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In more formal terms, a sequence of random 
variables converges in distribution if the CDFs for that 
sequence converge into a single CDF. Let’s say you 
had a series of random variables, Xn. Each of these 
variables X1, X2,…Xn has a CDF FXn (x), which 
gives us a series of CDFs {FXn (x)}. Convergence in 
distribution implies that the CDFs converge to a single 
CDF, Fx (x) (Kapadia et. al, 2017). 

Several methods are available for proving 
convergence in distribution. For example, Slutsky’s 
Theorem and the Delta Method can both help to 
establish convergence. Convergence of moment 
generating functions can prove convergence in 
distribution, but the converse isn’t true: lack of 
converging MGFs does not indicate lack of 
convergence in distribution. Scheffe’s Theorem is 
another alternative, which is stated as follows (Knight, 
1999, p.126). 

In undergraduate courses we often teach the 
following version of the central limit theorem: if X1,..., 
Xn are an iid sample from a population with mean µ 
and standard deviation σ then n 1/2 (X¯ − µ)/σ has 
approximately a standard normal distribution. Also we 
say that a Binomial (n, p) random variable has 
approximately a N (np, np (1 − p)) distribution. What is 
the precise meaning of statements like “X and Y have 
approximately the same distribution”? The desired 
meaning is that X and Y have nearly the same cdf. But 
care is needed. Here are some questions designed to try 
to highlight why care is needed.  

Q1) If n is a large number is the N (0, 1/n) 
distribution close to the distribution of X ≡ 0?  

Q2) Is N (0, 1/n) close to the N (1/n, 1/n) 
distribution?  

Q3) Is N (0, 1/n) close to N (1/ √ n, 1/n) 
distribution?  

Q4) If Xn ≡ 2 −n is the distribution of Xn close to 
that of X ≡ 0?  

Answers depend on how close close needs to be 
so it’s a matter of definition. In practice the usual sort 
of approximation we want to make is to say that some 
random variable X, say, has nearly some continuous 
distribution, like N (0, 1). So: we want to know 
probabilities like P (X > x) are nearly P (N (0, 1) > x). 
The real difficulties arise in the case of discrete random 
variables or in infinite dimensions: the latter is not 
done in this course. For discrete variables the following 
discussion highlights some of the problems. See the 
homework for an example of the so-called local central 
limit theorem. Mathematicians mean one of two things 
by “close”: Either they can provide an upper bound on 
the distance between the two things or they are talking 
about taking a limit. In this course we take limits. 

Statistical Convergence, was published almost 
fifty years ago, has flatter the domain of recent 
research. Unlike mathematicians studied 

characteristics of statistical convergence and applied 
this notion in numerous extent such as measure theory, 
trigonometric series, approximation theory, locally 
compact spaces, and Banach spaces, etc. The present 
thesis emphasis on certain results studied by Ferenc 
Mo´ricz in his two research researches i.e., "Statistical 
Convergence of Sequences and Series of Complex 
Numbers with applications in Fourier Analysis and 
summability " and in "Statistical Limit of Lebesgue 
Measurable functions with ∞ with applications in 
Fourier Analysis and summability". The perception of 
conjunction has been generalized in various ways 
through different methods such as summability and 
also a method in which one moves from a sequence to 
functions. In 1932 earlier, Banach coined the first 
generalization of it and named as "almost 
convergence". Later it was studied by Lorentz in 1948 
[1].  

The most recent generalization of the classical 
convergence i.e., a new type of conjunction named as 
Statistical Convergence had been originated first via 
Henry Fast [3] in 1951. He characterizes this 
hypothesis to Hugo Steinhaus [19]. Actually, it was 
Antoni Zygmund [20] who evince the results, 
prepositions and assertion on Statistical Convergence 
in a Monograph in 1935. Antoni Zygmund in 1935 
demonstrated in his book "Trigonometric Series" 
where instead of Statistical convergence he proposes 
the term "almost convergence" which was later proved 
by Steinhaus and Fast ([19] and [3]).  

Then, Henry Fast [3] in 1951 developed the 
notion analogous to Statistical Convergence, Lacunary 
Statistical Convergence and λ Statistical Convergence 
and it was reintroduced by Schoenberg [18] in 1959. 
Since then the several research research related to the 
concept have been published explaining the notion of 
convergence and is applications. The objective of the 
study is to discuss the fundamentals and results along 
with various extensions which have been subsequently 
formulated [2].  

A sequence (xn) in a Banach space X is said to be 
statistically convergent to a vector L if for any ε > 0 the 
subset {n: kxn − Lk > ε} has density 0. Statistical 
convergence is a summability method introduced by 
Zygmund [1] in the context of Fourier series 
convergence. Since then, a theory has been developed 
with deep and beautiful results [2] by different authors, 
and moreover at the present time this theory does not 
present any symptoms of abatement. The theory has 
important applications in several branches of Applied 
Mathematics (see the recent monograph by Mursaleen 
[3]). It is well known that there are results that 
characterize properties of Banach spaces through 
convergence types. For instance, Kolk [4] was one of 
the pioneering contributors. Connor, Ganichev and 
Kadets [5] obtained important results that relate the 
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statistical convergence to classical properties of 
Banach spaces. 

In this research we aim to unify some known 
results. In the process we pull together much of what is 
known about this topic and we will simplify some of 
their existing proofs. As a consequence we provide an 
unified point of view which allows us to solve several 
unsolved questions. In fact, we will obtain results in the 
context of ideal convergence. We will show that under 
reasonable conditions on a given non-trivial ideal, the 
studied properties do not depend on the ideal that we 
use to define the convergence spaces associated to the 
wuc series. This allows us to extend our results for an 
arbitrary summability method that shares some kind of 
ideal-convergence on the realm of all bounded 
sequences. This will allow us to unify the known 
results and obtain answers to some unresolved 
questions. The research is organized as follows. In 
Section 2, we will study the convergence induced by an 

⊂ideal I  P (N), (that is, the I-convergence), which will 
provide the general framework of our results in Section 
3. Next we will review some basic properties and some 
preliminary results about I-convergence that we will 
use later. Section 3 deals with the space of 
I-summability (which we will denote by SI (∑i xi )) 
associated to a weakly unconditionally Cauchy series 
∑i xi. It is shown that for any non-trivial regular ideal I, 
a series ∑i xi is weakly unconditionally Cauchy if and 
only if SI (∑i xi) is complete. Moreover, if this 
equivalence is true for each series in a normed space X, 
then the space X must be complete. There is a 
counterpart of the above results for the weak topology, 
and moreover, we were able to extend these results for 
certain general summability methods. Finally, for the w 
� -topology of X we will characterize when a series ∑i 
fi in the dual space X � is wuc, and this 
characterization incorporates general summability 
methods. Moreover, this result is sharpened when the 
space X is barrelled. The research concludes with a 
brief section on applications [31]. 
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