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Abstract: The investigation of extreme events is extremely relevant for a range of disciplines in mathematical, natural, 
and social sciences and engineering. Understanding the large fluctuations of the system of interest is of great 
importance from a theoretical point of view, but also when it comes to assessing the risk associated with low 
probability and high impact events. In many cases, in order to gauge preparedness and resilience properly, one would 
like to be able to quantify the return times for events of different intensity and take suitable measures for preventing 
the expected impacts. Prominent examples are weather and climate extremes, which can have a huge impact on human 
society and natural ecosystems. The present uncertainty in the future projections of extremes makes their study even 
more urgent and crucial   
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Introduction  

Statistics is concerned with the collection and 
analysis of data and with making estimations and 
predictions from the data. Typically two branches of 
statistics are discerned: descriptive and inferential. 
Inferential statistics is usually used for two tasks: to 
estimate properties of a population given sample 
characteristics and to predict properties of a system 
given its past and current properties. To do this, specific 
statistical constructions were invented. The most 
popular and useful of them are the average or mean (or 
more exactly, arithmetic mean) m and standard 
deviation s (variance s 2). To make predictions for 
future, statistics accumulates data for some period of 
time. To know about the whole population, samples are 
used. Normally such inferences (for future or for 
population) are based on some assumptions on limit 
processes and their convergence. Iterative processes are 
used widely in statistics. For instance the empirical 
approach to probability is based on the law (or better to 
say, conjecture) of big numbers, states that a procedure 
repeated again and again, the relative frequency 
probability tends to approach the actual probability. The 
foundation for estimating population parameters and 
hypothesis testing is formed by the central limit 
theorem, which tells us how sample means change when 
the sample size grows. In experiments, scientists 
measure how statistical characteristics (e.g., means or 
standard deviations) converge (cf., for example, [23, 
31]). Convergence of means/averages and standard 

deviations have been studied by many authors and 
applied to different problems (cf. [1-4, 17, 19, 20, 24-28, 
35]). Convergence of statistical characteristics such as 
the average/mean and standard deviation are rela ted to 
statistical convergence as we show in this section. 
Let m and c be the spaces of all bounded and convergent 
real sequences x = (xk) normed by x = supn |xn|, 
respectively. Let B be the class of (necessarily 
continuous) linear functionals β on m which are 
nonnegative and regular, that is, if x ≥ 0, (i.e., xk ≥ 0 for 
∈all k  N := {1, 2,...}) then β(x) ≥ 0, and β(x) = limk xk, 

∈for each x  c. If β has the additional property that 
∈β(σ(x)) = β(x) for all x  m, where σ is the left shift 

operator, defined by σ(x1, x2,...)=(x2, x3,...) then β is 
called a Banach limit. The existence of Banach limits 
has been shown by Banach [2,17,19], and another proof 
may be found in [3]. It is well known [21] that the space 
of all almost convergent sequences can be represented 

∈as the set of all x  m which have the same value under 
any Banach limit. In the research, we study some 
generalized limits so that the space of all bounded 
statistically convergent sequences can be represented as 
the set of all bounded sequences which have the same 
value under any such limit. It is proved that the set of 
such limits and the set of Banach limits are distinct but 
their intersection is not empty.  
 
Review of Literature: 

The Fibonacci sequence was firstly used in the 
theory of sequence spaces by Kara and Başarır [5]. 
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Afterward, Kara [6] defined the Fibonacci difference 
matrix F̂ by using the Fibonacci sequence (fn) for 
n ∈ {0, 1, …} and introduced the new sequence spaces 
related to the matrix domain of F̂. 

Following [7] and [8], high quality papers have 
been produced on the Fibonacci matrix by many 
mathematicians [9]. 

In this paper, by combining the definitions of 
Fibonacci sequence and statistical convergence, we 
obtain a new concept of statistical convergence, which 
will be called Fibonacci type statistical convergence. 
We examine some basic properties of new statistical 
convergence defined by Fibonacci sequences. 
Henceforth, we get an analogue of the classical 
Korovkin theorem by using the concept of Fibonacci 
type statistical convergence. 

Estimation frequently requires iterative 
procedures: the more iterations, the more accurate 
estimates. But when are estimates accurate enough? 
When can iteration cease? My the rule has become 
"Convergence is reached when more iterations do not 
change my interpretation of the estimates". 

There is a trade-off between accuracy and 
speed. Greater accuracy requires more iterations - more 
time and computer resources. The specification of 
estimation accuracy is a compromise. Frequently, 
squeezing that last bit of inaccuracy out of estimates 
only affects the least significant digits of printed output, 
has no noticeable effect on model-data fit, and does not 
alter interpretation. Three numerical convergence rules 
are often employed: 

 
1.1. Convergence of Random Variables 

Convergence of random variables (sometimes 
called stochastic convergence) is where a set of numbers 
settle on a particular number. It works the same way as 
convergence anywhere else; For example, cars on a 
5-line highway might converge to one specific lane if 
there’s an accident closing down four of the other lanes. 
In the same way, a sequence of numbers (which could 
represent cars or anything else) can converge 
(mathematically, this time) on a single, specific number. 
Certain processes, distributions and events can result in 
convergence— which basically mean the values will get 
closer and closer together. 

When Random variables converge on a single 
number, they may not settle exactly that number, but 
they come very, very close. In notation, x (xn → x) tells 
us that a sequence of random variables (xn) converges to 
the value x. This is only true if the absolute value of the 
differences approaches zero as n becomes infinitely 
larger. In notation, that’s: 

|xn − x| → 0 as n → ∞. 
 
What happens to these variables as they 

converge can’t be crunched into a single definition. 

Instead, several different ways of describing the 
behavior are used. 
1.2. Types of Convergence of Random Variables  

Convergence of Random Variables can be 
broken down into many types. The ones you’ll most 
often come across: 

 
Convergence in probability, 
Convergence in distribution, 
Almost sure convergence, 
 
Convergence in mean. 

Each of these definitions is quite different from 
the others. However, for an infinite series of 
independent random variables: convergence in 
probability, convergence in distribution, and almost sure 
convergence are equivalent (Fristedt & Gray, 2013, 
p.272). 
 
1.3.1. Convergence in probability 

If you toss a coin n times, you would expect 
heads around 50% of the time. However, let’s say you 
toss the coin 10 times. You might get 7 tails and 3 heads 
(70%), 2 tails and 8 heads (20%), or a wide variety of 
other possible combinations. Eventually though, if you 
toss the coin enough times (say, 1,000), you’ll probably 
end up with about 50% tails. In other words, the 
percentage of heads will converge to the expected 
probability. 

More formally, convergence in probability can 
be stated as the following formula: 

 
Where: 
P = probability, 
Xn = number of observed successes (e.g. tails) in n trials 
(e.g. tosses of the coin), 
Lim (n→∞) = the limit at infinity — a number where 
the distribution converges to after an infinite number of 
trials (e.g. tosses of the coin), 
c = a constant where the sequence of random 
variables converge in probability to, 
ε = a positive number representing the distance between 
the expected value and the observed value. 
The concept of a limit is important here; in the limiting 
process, elements of a sequence become closer to each 
other as n increases. In simple terms, you can say that 
they converge to a single number. 
 
1.3.2. Convergence in distribution 

Convergence in distribution (sometimes called 
convergence in law) is based on the distribution of 
random variables, rather than the individual variables 
themselves. It is the convergence of a sequence 
of cumulative distribution functions (CDF). As it’s the 
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CDFs, and not the individual variables that converge, 
the variables can have different probability spaces. 
In more formal terms, a sequence of random variables 
converges in distribution if the CDFs for that sequence 
converge into a single CDF. Let’s say you had a series 
of random variables, Xn. Each of these variables X1, 
X2,…Xn has a CDF FXn(x), which gives us a series of 
CDFs {FXn(x)}. Convergence in distribution implies 
that the CDFs converge to a single CDF, Fx(x) (Kapadia 
et. al, 2017). 

Several methods are available for proving 
convergence in distribution. For example, Slutsky’s 
Theorem and the Delta Method can both help to 
establish convergence. Convergence of moment 
generating functions can prove convergence in 
distribution, but the converse isn’t true: lack of 
converging MGFs does not indicate lack of convergence 
in distribution. Scheffe’s Theorem is another 
alternative, which is stated as follows (Knight, 1999, 
p.126). 

In undergraduate courses we often teach the 
following version of the central limit theorem: if X1, . . . 
, Xn are an iid sample from a population with mean µ 
and standard deviation σ then n 1/2 (X¯ − µ)/σ has 
approximately a standard normal distribution. Also we 
say that a Binomial(n, p) random variable has 
approximately a N(np, np(1 − p)) distribution. What is 
the precise meaning of statements like “X and Y have 
approximately the same distribution”? The desired 
meaning is that X and Y have nearly the same cdf. But 
care is needed. Here are some questions designed to try 
to highlight why care is needed.  

 
Q1) If n is a large number is the N(0, 1/n) distribution 
close to the distribution of X ≡ 0?  
Q2) Is N(0, 1/n) close to the N(1/n, 1/n) distribution?  
Q3) Is N(0, 1/n) close to N(1/ √ n, 1/n) distribution?  
Q4) If Xn ≡ 2 −n is the distribution of Xn close to that of 
X ≡ 0?  
 

Answers depend on how close needs to be so 
it’s a matter of definition. In practice the usual sort of 
approximation we want to make is to say that some 
random variable X, say, has nearly some continuous 
distribution, like N(0, 1). So: we want to know 
probabilities like P(X > x) are nearly P(N(0, 1) > x). The 
real difficulties arise in the case of discrete random 
variables or in infinite dimensions: the latter is not done 
in this course. For discrete variables the following 
discussion highlights some of the problems. See the 
homework for an example of the so-called local central 
limit theorem. Mathematicians mean one of two things 
by “close”: Either they can provide an upper bound on 
the distance between the two things or they are talking 
about taking a limit. In this course we take limits. 

Statistical Convergence,was published almost fifty 
years ago, has flatter the domain of recent research. 
Unlike mathematicians studied characteristics of 
statistical convergence and applied this notion in 
numerous extent such as measure theory, trigonometric 
series, approximation theory, locally compact spaces, 
and Banach spaces, etc. The present thesis emphasis on 
certain results studied by Ferenc Mo´ricz in his two 
research researches i.e., "Statistical Convergence of 
Sequences and Series of Complex Numbers with 
applications in Fourier Analysis and summability " and 
in "Statistical Limit of Lebesgue Measurable functions 
with ∞ with applications in Fourier Analysis and 
summability". The perception of conjunction has been 
generalized in various ways through different methods 
such as summability and also a method in which one 
moves from a sequence to functions. In 1932 earliest, 
Banach coined the first generalization of it and named as 
"almost convergence". Later it was studied by Lorentz  
in 1948 [1].  

The most recent generalization of the classical 
convergence i.e., a new type of conjunction named as 
Statistical Convergence had been originated first via 
Henry Fast[3] in 1951. He characterizes this hypothesis 
to Hugo Steinhaus[19]. Actually, it was Antoni 
Zygmund[20] who evince the results, prepositions and 
assertion on Statistical Convergence in a Monograph in 
1935. Antoni Zygmund in 1935 demonstrated in his 
book "Trigonometric Series" where instead of Statistical 
convergence he proposes the term "almost 
convergence" which was later proved by Steinhaus and 
Fast([19] and [3]).  

Then, Henry Fast[3] in 1951 developed the 
notion analogous to Statistical Convergence, Lacunary 
Statistical Convergence and λ Statistical Convergence 
and it was reintroduced by Schoenberg[18] in 
1959.Since then the several research related to the 
concept have been published explaining the notion of 
convergence and is applications. The objective of the 
study is to discuss the fundamentals and results along 
with various extensions which have been subsequently 
formulated [2].  

A sequence (xn) in a Banach space X is said to 
be statistically convergent to a vector L if for any ε > 0 
the subset {n : kxn − Lk > ε} has density 0. Statistical 
convergence is a summability method introduced by 
Zygmund [1] in the context of Fourier series 
convergence. Since then, a theory has been developed 
with deep and beautiful results [2] by different authors, 
and moreover at the present time this theory does not 
present any symptoms of abatement. The theory has 
important applications in several branches of Applied 
Mathematics (see the recent monograph by Mursaleen 
[3]). It is well known that there are results that 
characterize properties of Banach spaces through 
convergence types. For instance, Kolk [4] was one of 
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the pioneering contributors. Connor, Ganichev and 
Kadets [5] obtained important results that relate the 
statistical convergence to classical properties of Banach 
spaces. 

In this research we aim to unify some known 
results. In the process we pull together much of what is 
known about this topic and we will simplify some of 
their existing proofs. As a consequence we provide an 
unified point of view which allows us to solve several 
unsolved questions. In fact, we will obtain results in the 
context of ideal convergence. We will show that under 
reasonable conditions on a given non-trivial ideal, the 
studied properties do not depend on the ideal that we use 
to define the convergence spaces associated to the wuc 
series. This allows us to extend our results for an 
arbitrary summability method that shares some kind of 
ideal-convergence on the realm of all bounded 
sequences. This will allow us to unify the known results 
and obtain answers to some unresolved questions. The 
research is organized as follows. In Section 2, we will 

⊂study the convergence induced by an ideal I  P(N), 
(that is, the I-convergence), which will provide the 
general framework of our results in Section 3. Next we 
will review some basic properties and some preliminary 
results about I-convergence that we will use later. 
Section 3 deals with the space of I-summability (which 
we will denote by SI (∑i xi )) associated to a weakly 
unconditionally Cauchy series ∑i xi . It is shown that for 
any non-trivial regular ideal I, a series ∑i xi is weakly 
unconditionally Cauchy if and only if SI (∑i xi) is 
complete. Moreover, if this equivalence is true for each 
series in a normed space X, then the space X must be 
complete. There is a counterpart of the above results for 
the weak topology, and moreover, we were able to 
extend these results for certain general summability 
methods. Finally, for the w � -topology of X we will 

∗characterize when a series ∑i fi in the dual space X  is 
wuc, and this characterization incorporates general 
summability methods. Moreover, this result is 
sharpened when the space X is barrelled. The research 
concludes with a brief section on applications [31]. 
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