Websites: http://www.sciencepub.net http://www.sciencepub.net/report

Emails: editor@sciencepub.net reportopinion@gmail.com

Studies On σ-Statistical Convergence And Lacunary σ-Statistical Convergence

*Annu Rani and **Dr. Rajeev Kumar

*Research Scholar, Department of Mathematics, SunRise University, Alwar, Rajasthan (India) **Associate Professor, Department of Mathematics, SunRise University, Alwar, Rajasthan (India) Email: <u>puniajit50@gmail.com</u>

Abstract: In this paper we study one more extension of the concept of statistical convergence namely almost λ -statistical convergence. In section 1.2 we discuss some inclusion relations between almost λ -statistical convergence, strong almost (V, λ)-summability and strong almost convergence. Further in section 1.3 we study the necessary and sufficient condition for an almost statistically convergent sequence to be almost λ -statistically convergent.

[Rani, A. and Kumar, R. STUDIES ON σ-STATISTICAL CONVERGENCE AND LACUNARY σ-STATISTICAL CONVERGENCE. *Rep Opinion* 2021;13(10):1-6]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj131021.01.

Keywords: Parameters, Concetroidal matrices, Class 1, Related

1.1 Introduction

Let s be the set of all real or complex sequences and let l_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences $x = \{\xi_k\}$ respectively normed by $||x|| = \sup_k |\xi_k|$. Suppose D is the shift operator on s, i.e. $D(\{\xi_k\}) = \{\xi_{k+1}\}$.

Definition 1.1.1. A Banach limit [1] is a linear functional L defined on l_{∞} , such that (i) $L(x) \ge 0$ if $\xi_k \ge 0$ for all k,

(ii)
$$L(Dx) = L(x) \text{ for all } x \in l_{\infty},$$

(iii) $L(e) = 1 \text{ where } e = \{1,1,1,\ldots\}.$

Definition 1.1.2. A sequence $x \in l_{\infty}$ is said to be almost convergent [19] if all Banach limits of x coincide.

Let \hat{c} and \hat{c}_0 denote the sets of all sequences which are almost convergent and almost convergent to zero. It was proved by Lorentz [19] that

$$\label{eq:constraint} \boldsymbol{\hat{c}} = \{ \boldsymbol{x} = \{ \boldsymbol{\xi}_k \} \colon \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \boldsymbol{\xi}_{k+m} \ \text{ exists uniformly in } m \}.$$

Several authors including Duran [7], King [15] and Lorentz [19] have studied almost convergent sequences.

Definition 1.1.3. A sequence $x = \{\xi_k\}$ is said to be (C,1)-summable if and only if $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \xi_k$ exists.

Definition 1.1.4. A sequence $x = {\xi_k}$ is said to be strongly (Cesáro) summable to the number ξ if

 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}|\xi_{k}-\xi|=0.$

Spaces of strongly Cesáro summable sequences were discussed by Kuttner [17] and some others and this concept was generalized by Maddox [20].

Remark 1.1.1. Just as summability gives rise to strong summability, it was quite natural to expect that almost convergence must give rise to a new type of

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\xi_{k+m} - \xi| = 0 \text{ uniformly in } m$$

If [c] denotes the set of all strongly almost convergent sequences, then

$$[\hat{c}] = \{x = \{\xi_k\}: \text{ for some } \xi, \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n |\xi_{k+m} - \xi| = 0 \text{ uniformly in } m \}.$$

Let $\lambda = {\lambda_n}$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$$

Definition 1.1.7. Let $x = \{\xi_k\}$ be a sequence. The generalized de la Valée-Pousin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} \xi$$

where $I_n = [n - \lambda_n + 1, n]$.

Definition 1.1.8. A sequence $x = \{\xi_k\}$ is said to be (V, λ)-summable to a number ξ [18] if $t_n(x) \rightarrow \xi$ as n→∞.

Remark 1.1.9. Let $\lambda_n = n$. Then $I_n = [1, n]$ and $t_n(x) = \frac{1}{n} \sum_{k=1}^n \xi_k \; .$

Hence (V,λ) -summability reduces to (C,1)-summability when $\lambda_n = n$.

Definition 1.1.10. A sequence $x = \{\xi_k\}$ is said to be strongly almost (V, λ)-summable to a number ξ if

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\sum_{k\in I_n}|\xi_{k+m}-\xi|=0 \qquad \text{ uniformly in }m.$$

In this case we write $\xi_k \to \xi [\ \hat{V} \ , \lambda]$ and $[\ \hat{V} \ , \lambda]$ denotes the set of all strongly almost (V,λ) -summable sequences,

convergence, namely strong almost convergence and this concept was introduced and discussed by Maddox [20].

Definition 1.1.1. A sequence $x = \{\xi_k\}$ is said to be strongly almost convergent to the number $\boldsymbol{\xi}$ if

$$\mathbf{m} \stackrel{\mathbf{I}}{\to} \sum_{k=1}^{\infty} |\xi_{k+m} - \xi| = 0 \text{ uniformly in } \mathbf{m}.$$

i.e.
$$[\hat{\mathbf{V}}, \lambda] = \{x = \{\xi_k\}: \text{ for some } \xi, \lim_{n \to \infty} \frac{1}{\lambda_n}$$

$$\sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \text{ uniformly in } m\}.$$

Definition 1.1.11. A sequence $x = {\xi_k}$ is said to be almost statistically convergent to the number ξ if for each $\varepsilon > 0$ 1

$$\lim_{n\to\infty}\frac{1}{n}|\{k\le n\colon |\xi_{k+m}-\xi|\ge\epsilon\}|=0\quad \text{uniformly in }m.$$

In this case we write $\boldsymbol{\hat{S}}$ -lim $\xi_k = \xi$ or $\xi_k \to \xi(\boldsymbol{\hat{S}})$ and S denotes the set of all almost statistically convergent sequences.

Definition 1.1.12. A sequence $x = \{\xi_k\}$ is said to be almost λ -statistically convergent to the number ξ if for each $\varepsilon > 0$

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\,|\,\{k\,\in\,I_n\colon |\xi_{k^+m}-\xi|\geq\epsilon\}\,|=0 \text{ uniformly in }m.$$

In this case we write $\hat{\mathbf{S}}_{\lambda}$ -lim $\xi_k = \xi$ or $\xi_k \rightarrow \xi(\hat{\mathbf{S}}_{\lambda})$

and S_{λ} denotes the set of all almost λ -statistically convergent sequences.

Remark 1.1.13. If
$$\lambda_n = n$$
, then \hat{S}_{λ} is same as \hat{S}

1.2 SOME **INCLUSION** RELATION **BETWEEN** ALMOST λ-STATISTICAL CONVERGENCE, STRONG ALMOST (V,λ)-SUMMABILITY AND STRONG ALMOST CONVERGENCE

reportopinion@gmail.com

Proof. Suppose that $x = {\xi_k}$ is almost strongly

 $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\xi_{k+m} - \xi| = 0 \text{ uniformly in m. } \dots(1)$

 $\sum_{k=1}^n \left| \ \xi_{k+m} - \xi \right| \geq \sum_{\left| \xi_{k+m} - \xi \right| \geq \epsilon} \left| \ \xi_{k+m} - \xi \right|$

summable to ξ . Then

Let us take some $\varepsilon > 0$. We have

In this section we study some inclusion relations between almost λ -statistical convergence, strong almost (V, λ)-summability and strong almost convergence. First we show that every strongly almost summable sequence is almost statistically convergent.

Theorem 1.4.1. If a sequence $x = {\xi_k}$ is almost strongly summable to ξ , then it is almost statistically convergent to ξ .

$$\geq \epsilon |\{k \leq n \colon |\xi_{k^+m} - \xi| \geq \epsilon\}|$$

Consequently,

⇒

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}|\xi_{k+m}-\xi|\geq\epsilon\lim_{n\to\infty}\frac{1}{n}|\{k\leq n\colon |\xi_{k+m}-\xi|\geq\epsilon\}|$$

Hence by (1) and the fact that ε is fixed number, we have

 $\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |\xi_{k+m} - \xi| \ge \epsilon\}| = 0 \text{ uniformly in m.}$ x is almost statistically convergent.

Theorem 1.2.2. Let $\lambda = {\lambda_n}$ be same as defined earlier. Then

(i) $\xi_k \to \xi[\hat{V}, \lambda] \Rightarrow \xi_k \to \xi(\hat{S}_{\lambda})$ and the inclusion $[\hat{V}, \lambda] \subseteq \hat{S}_{\lambda}$ is proper,

(ii) if $x \in l_{\infty}$ and $\xi_k \to \xi(\hat{S}_{\lambda})$, then $\xi_k \to \xi[\hat{V}, \lambda]$ and hence $\xi_k \to \xi[\hat{c}]$ provided $x = \{\xi_k\}$ is not eventually constant.

(iii)
$$S_{\lambda} \cap l_{\infty} = [V, \lambda] \cap l_{\infty},$$

where l_{∞} denotes the set of bounded sequences.

Proof. (i). Since $\xi_k \to \xi[\hat{V}, \lambda]$, for each $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \qquad \text{uniformly in m. ...(2)}$$

Let us take some $\varepsilon > 0$. We have

$$\begin{split} \sum_{k \in I_n} &| \; \xi_{k+m} - \xi | \geq \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \geq \epsilon}} &| \; \xi_{k+m} - \xi | \\ &\geq \epsilon | \{ k \in I_n : |\xi_{k+m} - \xi| \geq \epsilon \} | \end{split}$$

Consequently,

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\sum_{k\in I_n}|\xi_{k+m}-\xi|\geq\epsilon\lim_{n\to\infty}\frac{1}{\lambda_n}|\{k\in I_n:|\xi_{k+m}-\xi|\geq\epsilon\}|$$

Hence by using (2) and the fact that ε is fixed number, we have

 $\lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \epsilon\}| = 0 \qquad \text{uniformly in } m,$

http://www.sciencepub.net/report

reportopinion@gmail.com

i.e. $\xi_k \rightarrow \xi(\hat{\mathbf{S}}_{\lambda})$.

It is easy to see that [$\boldsymbol{\hat{V}}$, $\boldsymbol{\lambda}$] $\ \Box$ $\ \boldsymbol{\hat{S}}_{\boldsymbol{\lambda}}$.

(ii). Suppose that $\xi_k \to \xi(\mathbf{\hat{S}}_{\lambda})$ and $x \in I_{\infty}$. Then for each $\varepsilon > 0$ $\lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \varepsilon\}| = 0 \qquad \text{uniformly in m. } \dots(3)$

Since $x \in l_{\infty}$, there exists a positive real number M such that $|\xi_{k+m} - \xi| \le M$ for all k and m. For given $\varepsilon > 0$, we have

$$\begin{split} \frac{1}{\lambda_n} \sum_{k \in I_n} &| \xi_{k+m} - \xi | = \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \ge \epsilon}} &| \xi_{k+m} - \xi | + \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \ge \epsilon}} &| \xi_{k+m} - \xi | \le \epsilon \\ &\leq \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ |\xi_{k+m} - \xi| \ge \epsilon}} &M + \frac{1}{\lambda_n} \sum_{k \in I_n} \epsilon \\ &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \epsilon\}| + \epsilon \frac{1}{\lambda_n} \left[n - (n - \lambda_n + 1) + 1\right] \\ &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \epsilon\}| + \epsilon \frac{1}{\lambda_n} \lambda_n \\ &= \frac{M}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \epsilon\}| + \epsilon \\ \Rightarrow \qquad \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} &| \xi_{k+m} - \xi | \le M \lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : |\xi_{k+m} - \xi| \ge \epsilon\}| + \epsilon \end{split}$$

Hence by using (3), we get

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi| = 0 \qquad \text{uniformly in m.} \qquad \dots (4)$$

$$\Rightarrow \qquad \xi_k \to \xi[\hat{V}, \lambda] .$$

Further, we have

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} |\xi_{k+m} - \xi| &= \frac{1}{n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{n} \sum_{k=n-\lambda_n+1}^{n} |\xi_{k+m} - \xi| \\ &= \frac{1}{n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{n} \sum_{k\in I_n} |\xi_{k+m} - \xi| \\ &\leq \frac{1}{\lambda_n} \sum_{k=1}^{n-\lambda_n} |\xi_{k+m} - \xi| + \frac{1}{\lambda_n} \sum_{k\in I_n} |\xi_{k+m} - \xi| \\ &\leq \frac{2}{\lambda_n} \sum_{k\in I_n} |\xi_{k+m} - \xi| \end{split}$$

http://www.sciencepub.net/report

⇒

⇒

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\xi_{k+m} - \xi| \le 2 \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |\xi_{k+m} - \xi|$$

Hence

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\xi_{k+m} - \xi| &= 0 \quad \text{uniformly in m.} \quad [\text{Using (4)}] \\ \xi_k &\to \xi[\hat{c}]. \end{split}$$

 $\xi_k \rightarrow \xi[\hat{V},\lambda].$

(iii). Let $x \in l_{\infty}$ be such that $\xi_k \to \xi$ (\hat{S}_{λ}). Then by (ii),

Thus

$$\mathbf{\hat{S}}_{\lambda} \cap l_{\infty} \subset [\mathbf{\hat{V}}, \lambda] \cap l_{\infty}.$$
 ...(5)

Also by (i), we have $\xi_k \to \xi[\hat{\mathbf{V}}, \lambda] \Rightarrow \xi_k \to \xi(\hat{\mathbf{S}}_{\lambda}).$ So

 $\begin{bmatrix} \hat{\mathbf{V}}, \lambda \end{bmatrix} \subset \hat{\mathbf{S}}_{\lambda}.$ $\begin{bmatrix} \hat{\mathbf{V}}, \lambda \end{bmatrix} \cap l_{\infty} \subset \hat{\mathbf{S}}_{\lambda} \cap l_{\infty}.$...(6)

Hence by (5) and (6)

$$\mathbf{\hat{S}}_{\lambda}\cap \mathit{l}_{\infty}$$
 = [$\mathbf{\hat{V}}$, λ] \cap l_{∞}

This completes the proof of the theorem

⇒

1.3 NECESSARY AND SUFFICIENT CONDITION FOR AN ALMOST STATISTICALLY CONVERGENT SEQUENCE TO BE ALMOST λ-STATISTICALLY CONVERGENT

Since
$$\frac{\lambda_n}{n}$$
 is bounded by 1, we have $\hat{S}_{\lambda} \subseteq$

 \hat{S} for all λ . In this section we discuss the following relation.

Theorem 1.4.1. $\hat{S} \subseteq \hat{S}_{\lambda}$ if and only if

$$\liminf_{n\to\infty}\frac{\lambda_n}{n}>0,\qquad \dots(7)$$

i.e. every almost statistically convergent sequence is almost λ -statistically convergent if and only if (7) holds.

Proof. Let us take an almost statistically convergent sequence $x = {\xi_k}$ and assume that (7) holds. Then for each $\epsilon > 0$, we have

 $\lim_{n \to \infty} \frac{1}{n} |\{k \le n; |\xi_{k+m} - \xi| \ge \epsilon\}| = 0 \text{ uniformly in } m.$ For given $\epsilon > 0$ we get,

$$\{k\leq n\colon |\xi_{k+m}-\xi|\geq \epsilon\}\ \supset \{k\ \in\ I_n\colon |\xi_{k+m}-\xi|\geq \epsilon\}.$$

...(8)

$$\begin{split} &\frac{1}{n}|\{k\leq n: |\xi_{k+m}-\xi|\geq\epsilon\}|\geq \frac{1}{n}|\{k\in I_n: |\xi_{k+m}-\xi|\geq\epsilon\}|\\ &\geq \frac{\lambda_n}{n} \; \frac{1}{\lambda_n}|\{k\in I_n: |\xi_{k+m}-\xi|\geq\epsilon\}| \end{split}$$

Taking the limit as $n \rightarrow \infty$ and using (7), we get

http://www.sciencepub.net/report

reportopinion@gmail.com

$$\begin{split} &\lim_{n\to\infty}\frac{1}{\lambda_n} |\{k\in I_n: |\xi_{k+m}-\xi|\geq\epsilon\}|=0\\ &\text{i.e. } \xi_k\to\xi(\hat{S}_{\lambda}).\\ &\text{Hence } \hat{S}\subseteq\hat{S}_{\lambda} \text{ for all } \lambda. \end{split}$$

uniformly in m,

Conversely, suppose that $\hat{\mathbf{S}} \subseteq \hat{\mathbf{S}}_{\lambda}$ for all λ . We have to prove that (7) holds. Let as assume that

$$\underset{n\to\infty}{\text{liminf}}\frac{\lambda_n}{n}=0.$$

As in [9], we can choose a subsequence $\{n(j)\}$ such that

$$rac{\lambda_{\mathsf{n}(j)}}{\mathsf{n}(j)} < rac{1}{j}$$
 .

Define a sequence $x = \{\xi_i\}$ by

$$\xi_i = \begin{cases} 1 & \text{ if } i \in I_{n(j)}, j = 1, 2, 3, \dots \\ 0 & \text{ otherwise.} \end{cases}$$

Then $x \in [\hat{c}]$ and hence by Theorem 1.4.1,

 $x \in \hat{S}$. But on the other hand $x \Box [\hat{V}, \lambda]$ and Theorem 1.4.1 (ii) implies that $x \Box \hat{S}_{\lambda}$. Hence (7) is necessary.

This completes the proof of the theorem

References:

- [1] I.J. Maddox, Statistical convergence in a locally convex space, *Math. Proc. Camb. Phil. Soc.* 104 (1988) 141-145.
- [2] Mursaleen, Invariant means and some matrix transformations, *Tamkang J. Math.* 10 (2) (1979) 183-188.
- [3] Mursaleen, Matrix transformations between some new sequence spaces, *Houston J. Math.* 9 (4) (1983) 505-509.
- [4] Mursaleen, λ -statistical convergence, *Math. Slovaca* 50 (1) (2000) 111-115.
- [5] I. Niven and H.S. Zuckerman, *An Introduction to The Theory of Numbers*, Fourth Ed., New York, John Wiley and Sons, 1980.

- [6] T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca* 30 (2) (1980) 139-150.
- [7] E. Savas, Some sequence spaces involving invariant means, *Indian J. Math.* 31 (1) (1989) 1-8.
- [8] E. Savas, On lacunary strong σ -convergnce, Indian J. Pure Appl. Math. 21 (4) (1990) 359-365.
- [9] E. Savas and F. Nuray, On σ -statistical convergence and lacunary σ -statistical convergence, *Math. Slovaca* 43 (1993) 309-315.
- [10] E. Savas, Strong almost convergence and almost λ -statistical convergence, *Hokkaido Math. J.* 29 (2000) 531-536.
- [11] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1) (1972) 104-110.
- [12] I.J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly* 66 (1959) 361-375.