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ABSTARACT: This paper depicts the class OF Banach Spaces with normal structure and
that they are generally referred to as uniformly convex spaces. A review of properties of a
uniformly convex spaces is also examined with a view to show that all non-expansive
mapping have a fixed point on this space. With the definition of uniformly convex spaces in
mind, we also proved that some spaces are uniformly spaces. [Researcher. 2009;1(1):74-85].
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INTRODUCTION

The importance of Uniformly convex spaces in Applied Mathematics and Functional
Analysis, it has developed into area of independent research, where several areas of
Mathematics such as Homology theory, Degree theory and Differential Geometry have come
to play a very significant role. [1,3,4]
Classes of Banach spaces with normal structure are those generally refer to as Uniformly
convex spaces. In this paper, we review properties of the space and show that all non-
expansive maps have a fixed-point on this space. [2]

Let x be a Banach Space. A Branch space x is said to be Uniformly convex if for

&> Othere exist a © :(‘9)> 0 such that if X, y £ x with //x/I=1, IlylI=1 and //x-yl//Z €, then
//%(X+ y)II<1-0

THEOREM (1.0)
Let X = Lp (u) denote the space of measurable function f such that //f// are integrable,
endowed with the norm.

. (ox/ £ 10u) 5

Then for 1<P<+ the space LP(”) is uniformly convex for the proof of the above
theorem, we need the following basic lemma.

Lemma (1.0)

+
Let X=Lp, then for p g>0, such }/p % and for each pair f, g £ x, the following
inequalities hold.

(i) For1<p<?2

WY (F+9)ia+ i Y (f +a)ila<ii2(1 £ 1l p+1 g/l q)
And
(ii) For 2= P <
It +glp+i(t—glip<i2®(ltipp+igllq)
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We now apply lemma (1.0) to prove theorem (1.0)

Proof of theorem (1.0)
f,geX =Lp,

¢ MEH<LIGHSY a4 for any >0, we have

Choose such tha
9/12 ¢ Two cases arise:

Casel: l<ps2
In this case (1.0) yield

//%(f +g)//q+//%(f —g)laq<2— (-0 flp+Hgi) i

-(a-1)2fa-1)=

It -

1Y (f +g)ilq<1- 1129 q<1- ()
Thus, 2 g 2

(&) ) 1o
1Y+ gy <1- Ly
o 172l +9) )

5:1—//@//y>o
So that by choosing 9

Y, (f+g)ll<1-6 _
We obtain }/ " g and so X~ Lp(kp < 2) is uniformly convex.
Case 2: 25 p<oo

As in Case 1, we use (i) of Lemma (3.1.1) to show that * = Lp(kp <) g uniformly
convex, completing the proof of the theorem.

Since Lemma (3.1.1) is also valid for 1p, l1sp<o

, the following theorem is also
true.

Theorem (2.0)

For 1S p<w , the space 1p of all infinite (real or complex) sequence, (X1,X2,X3,...... )
D I% 1 p <o
such that i is uniformly convex. As a special case of theorem (1.0), we have
the following.

Corollary (1.0)
Every Hibert space H is Uniformly convex. Although theorem (1.0) and (3.0) provide

large classes of space which are Uniformly convex, a few well known spaces are known not
to be Uniformly convex.

1. The Space * is not Uniformly convex

7(1,0,0,0,......... VI A =Y 1, =2>¢.

NY(X-Yl<1-6

However,
7\’1

To see this €=1 and choose
// -Y /<1

%(7[ ) and there is no € =0 such that
is not uniformly convex.

2. The space A is not uniformly convex
U =(10,00..c... Jand V =(11,0,0,0,......... ).BothUandV &, Take & =1, 0

1'%, -V)il=1andso.,

, showing that

Consider

U o =1/IV l[oand /IU - V/lwo=2>¢

. However, is not
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uniformly convex.
3. Consider c(a,b) the space of real-valued continuous function on the compact interval (a,b)
with Sup norm.
Then C (a,b) is not uniformly convex.
To see this, choose two function f(t), g(t) defined as follows:
F(t) = 1 for all t€(@.b)
And

g(t)= E_;;for each te(a,b)

1
Take 2 clearly f(t), g(ty & C@ DM/ T 1=l gl =1and /I -gll = &

I f+g)//=1
Also, %( g) and so c(a, b) is Not uniformly convex.
The following propositions are the consequences of the definition of uniform convexity.

Proposition (1.0)
Suppose x is Uniformly convex Banach space, then for any

(5)}
o > 0such that // I1<31-6 0
> 0such tha %(x+ y) { -

0>0,6>0 arbitrary

Vectors x,yex with //x// <0, [lyl/= there exists a
Proof

_¢
Let £>0 be givenand let 1 =X/ 3,2, =¥/ anq suppose we set © A

Iz, Il <landllz, —z, =Y iIx—yll=* Id=¢

Now, by uniform convexity, we have
=11 Y2, +2, 11 <1-5(e)

1Y 0(x+ y)ii 515%

1135 (x+ y)li < {1— 5@}6
Which implies, % 0

Proposition (2.0)

Let x be a uniformly convex Banach space. Then for any
such that /X1 <0 -yl > & then exist a;

o= 6(%)> Osuch that

That is
e>0,6>0and 85(0,1) if X,yeX

lax+@L—a)y - 2(‘9% mine,1-a)/l d
Proof

0,
Without loss of generality, we may take g( %)
Now, ! ex+@L=a)yll =1l al+y)+@~2a) 1 yII

<20 11 Y4 (X4 Y+ QU= 26) Y H oo (1.0)
2

But by proposition (1.0), we have that there exists ad9>0, such that
1Y (x+ y) Il <11- (&)1l &
Substitute this into (1.0), to have
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Since /lyll <0 = {8 -2a0 %a}

:(1—2a8%8j

Put by the choice of ag(o’ %) have & > min(e:,1- )

Thus, we have,
ox+(@L-a)ll <111- 25%) min(a1-a)ll

We now discuss a characteristic of some Banach space, which is related to uniform
convexity.
2.0 STRICTLY CONVEX BANACH SPACES
Definition (1.0)

A Banach space X is said to be strictly convex (or strictly rotund if for any pair of
vecors X, y £ x, the equation //x + y//=//x+lly/l, implies that there exists a 4=0 such that
x = Ax (ory = Ax)

The following Lemma on uniform convexity will be useful in the sequence.
Lemma (1.0
Let X be a uniformly convex Banach space.

2+0,11x - 2yl 2 0, then 1 1) (x + 2y) I < Il X1

If
Proof
Suppose 0</Ix /I <IlI'yll.(The proof for the case 0 < // x // </I'y Ilis similar)
22X ond seta=x,b=2y.The/la-b /i =/l x -y I >0,
Take YN
Let € > Osuchthat /ix - Ayll 2 &
Observe that,
Hall =it o li=aiy ="M _ sy
Iyl
5(g)>0

5=
So by proposition (3.1.1), there exist a el

o(e)
// a+b)lf<1-—L[Ix/l<lIxl,
Such that %( ) Ix

Thatis 1Y (x+ y) <l x I

Completing the proof of the lemma, we now prove the following theorem.
Theorem (1.2)

Every uniformly convex space is strictly convex

Proof

Suppose x is uniformly convex Let X, ¥éX be non-zero vectors such that IIx+yll=IIxI1+I1yl]

We need to show that there exist 24 > 0such that X =1y \we consider two possible cases.
Case l: /I xII=lly 1l
Case |1: O </I'yll <II'xIl,(The other case 0 <//x // </'y I is treated)

Similarly,
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Proof of Case |

_ Ix 1l
X #y;then as =1
If x=, then (11) holds with 4 =1, so, suppose YT and 11 x+y 11<2 lix 1] =+
Iy Il (Since ll x Il'y I).
Thatis, /I x +y /I <1/ x /I + [ly /. Contradicting (I).
Thus, X # y is not possible and this proves case I.
Proof of Case 2

Suppose // x=y // = /I x Il + //'y I/ and that x* 4y. Since x is uniform convex, lemma (2.0)
yields.

A E )/ 'Y —— (1.1)
0<ityll <t xiitet A=y = i+ iy
For Iyl
And x* 4y
We have X+ 11y 1) = AMX + Yl = HAX + Ay =X + X /I
<X+ 2+ A+ X oo, 1.2)
Thatis A+ 1y )X+ 200yl + 2000 -1 x 11
’ = A XU +1Y ). 1.3)

The inequalities (b) and (c) gives
A M+ 1y 1) =1 x + 2y 11+ (A-1)1 1]

Il
=//y//%(x+/1y)=//x//

From which we obtain (since Contracting (1.1). This
completes the proof of the theorem.

Theorem (3.2.2) gives a large class of strict convex Banach spaces. However, it can be shown

easily that Ay Ly
strictly convex.

= and c(a,b) are NOT strictly convex. For example, to see that M. is not

3.0 THE MODLUS OF CONVEXITY

Definition (2.0)

Let x be a Banach space, the modulus of convexity of X is the function
Xle)=InfL—// X+ y)Il:x,ye BCO), /I x-yll >

defined by X(E)= 1811 250+ y)I1 %,y BO(O) 11Xy > o

We now give an important characteristic of the modulus of convexity in the following

proposition.

Proposition (3.0)

The modulus of convexity of a Banach space x is a non-decreasing convex function.

Proof

o:(0,2)—>(01)

The proof that 5X(‘9) IS non-decreasing is a trivial consequence of definition (2.0) and it is
therefore omitted. To proof convexity, suppose for any two vectors U, V¢ X, we denote by

N(U,V) the set of all pairs x, ,y ¢ X with x, y€ B, (0), such that for some real scalars %1’ B,

we have
X-y=al
X+Yy=BV

That is N(U,V) = {(x,y):x,yeB,(0)and x -y = oU,x +y = BV}
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For 1£(0,2), define
SUN ) =inf L= Y1 x+ Yl X, YN (U)X =Y 12 (L.4)

It is easy to see that 5(U,V,r)=0forin (1.4)
{Since// x Il =1, for all xeN(U, V)}

Moreover, of r, for given any My in (0,2) and €>0  we can choose
(X, ¥, )eN(U, V)such that (for K =1,2)

X Yl = N (1.5)
and
SN+ 84 21 (Y 11X, 4 Y M e (L6)
The choice of (X, Y«) is possible because of the definition 5(U’V’ ‘9) in (1.5) as infimum.

Now, for X =(0.1)

Lot Xs =X, + (L= 2)x,
And Y =1 +(0-2)y,
We have //Xa 1 S A1, l1+(L= A)ll <1Cas x,, x, B, (0)
Similarly

Also, (i ¥, JeN(U,V)
Xy =Y =a U
and x, -y, =4V
From (1.6), we have
Xo=Ys =X L=y, + 2y, —(L-y)y,
= /1()(1 - y1)+(1—y)(x2 - yz)
= AaU +(1-y)a,U, from ....cvvevee, (1.7)
=llAa, +(1-y)a, IIU

implies that exist constants %« By (k :1'2) such that

If we set g=2% + (-2 9 some real number,
We have XS _yS =/1X1+(1—y)X2 +2’y1_(1_y)y2
= /1()(1 + y1)+(1—/1)(X2 + Y2)
=ABN +(L=2)BN (1.8)

= 11AB, + (1= 2)B, IV
So that for some real number # =44 +(1-4)3,

We have
= Ao, + (1= Ae, 11U 1]
=1l da, + (1= A)a, 11U 1]
Xy =Yg Il =Aa, U I+~ A)ex, U I
=AU l+ (L= A) 1 a,U I
So that we have
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=P, + (L= A)B, 11Vl
Xy +Y, I =1 +A=2)B, VI
=1l By + (1= 2)ll B,V
= AN X, + Yy 4 Q= A Xy + Yy e, (1.10)
Now making use of (3.3.9), we get
X, =y, 11> e, (1-A)e,
But then (1.7) and (1.8) give
5(u, v, Ae, Jr(l—/’t)gz)SI—}é//x3 +y, /I

=1- YU Al x, +y, 1+ (U= )X, +y, ]
=1=A120x; +y, 1= Yo+ W= ) X, +y, /I

= 2= Y)irx, +y, i1+ 0 ( - Y5 1x, +y, 1l

<A(u,v, Ae, )+ % I+ Q=8 ae, +el2ll w11
From (1.0)
=A5(u,v, A, )+ (1= 2)5(u,v,5,)+ &/2
Now since € is arbitrary, we infer that
_8(u,v, Ag, + (1= 2)e, )< A8(u, v, 8,) + (1- 2)5(u, v, &, )
Thus, (u, v, €) is convex. Now from the definitions of N(u, v) and 9 (u, v, €) each pair (X, y)
B (0)x B(0)
Belong to some N(u, v), so that we have
5 x(g)=Inf{5(u,v,&):U, V,eX,u =0,v=0andas 5(u,v, ¢)is convex

For the next proposition, we need the following lemma.
Lemma (2.0)

Suppose | :(02)>(02) js non-decreasing convex function and 0= U <X<Y=<2 an

f(u)-f(v) . f(v)-f(x)
v-u y-X
Proof

We can choose ap, (0 l) such that

'S0 is 5X(8)

f(v)-f(u) fllau+(@1-a)y
au+(-a)y-u from (1.11)
1-aff(y)-f(u)
+(@-a)y-u
L-a)f(y)-1-a)f(u)
L-a)y-u)
fly)-f(u) _ Bf(y)- )
_ y-u By -u)
M from (1.11)

)

asif is
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f(y)— B (u)+ B (y)- f(y)
y — X

That is,
“Q::@%;”W;ff“w+a_gpa_ﬂy@y/ ............... (1.12)
But since f is convex we get from (1.11)

Hence, (1.12) leads to
f(v)-f() _ f(y)- 1(x)
v—u y — X
We now prove the following proposition
Proposition (3.0)
Let T :(0’2)_) (0’1) be a non-decreasing convex function with f(0) = 0. Then for each x>2, f

is continuous and has Lipschitz constant (2-x)™
Proof

As any point in the domain of f, rg(O,Z)' say is finite and f is non-decreasing then at
each x>2, the right derivative f' r(x) of f exists (See Rockfella).
Thus, for v<x<2, we have by definition f* r(v+)
lim f(x)- f(v) _ lim f(2)- f(x)

X—>V X-V XV 2-X by Lemma (1.11)
_f2)-fv)
2-V
_(-a)f(y)--a)f ()
(L-a)y-u)
fy)-f) _ BlEly)-f)
y-u Bly—u)
AlE(y)= /% () from above
y—X
IOt IO gy (1.13)
That is, g
ORI PRIVRIO S T L19)
V—u y—X

But since f is convex, we get from (1.12)
f(x)=f 1 pu+(L-p)yl<piu)+@Q-B)(y)
Hence, (3.3.12) leads to
H(v)-f() _ f(y)- 1(x)
vV-—u y — X
We now prove the following proposition
Proposition (4.0)

Let f :(012)* (0’1) be a non-decreasing convex function with f(0) = 0. Then for each x>2, f
is continuous and has Lipschitz constant (2-x)™
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= flr(v)é—f @)~ 1) < b
That is 2-v 2-v
Replacing v by x, we have
1
= firlv)s —
r(v) oy

0,2)

Now, by the mean value theorem, for all x,yg( we have

IE(x) = ()< EE@)IX =Y 5o some €4 Y)

< Zi IIx -yl from (A)

That is IEx)—f(y)ir<@-x)" )x-vyll
So that the function f is Lipschitz constant (2-x)" on each interval (0,x).
The following proposition is also of interested

Proposition (5.0)

The Banach space x is uniformly convex if and only if X(&)>0 gor g1t -5(0:2)
Proof

Suppose x is uniformly convex, then if X YEX WIth /IXIT <1, /lyll <land //x - ylI 2 & \yg haye
1'% (x+ y)ll <1- 5, for 5 >0
Now X(g)=Inf (L- 11X+ yll, 11X -yl > &, lIxII <1, Iyl <1.
<NI1-(1-6)lI=56>0
Lot O(¢)> 0forre(0,2)and choose x, yax such that
IIx <L Iyl <land/Ix -yl > ¢
By definition
5x(z)=Inf L= 11 14 (x-+ y)11:x, yeB (0)and lix - ylI 2}> 0

This implies that for all % Y¢B©) with
I1x-yil> 111 ¥ (x+ y) (&)
This implies that there exists a ¢ >0 such that
1-11 Y (x+y)l <1-5,56>0
Which implies uniform convexity

4.0 NORMAL STRUCTURE AND REFELEXIVITY OF BANACH SPACES
In this section, we deal with some other geometric properties which are important in
studying the fixed point theory of non-expansive mapping.
Let C be a bounded convex subset of a Banach spacex.
The diameter d of c is define by
D = Sup{// zi-zj /1, zj, zZICA}
A point Zo€ X is said to be a diameter point of C
If Sup Wz, —z21l:2€}=d

And a point 2" € X js called a non-diamental point of ¢
if sup /2" —2/1:2e=C}<Sup lzi-zjll zi, zj e C}

Definition 3.0
A bounded convex subset of Banach space is said to have normal structure if for each
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convex subset x of C, consisting of more than one point A, contains a non-diamental point

that is there exists a 20 €A,

Such that Sup {1z, —211:2eC}<Sup {llzi-zjll : zi, zj € A}

Geometrically, C is said to have normal structure if for every convex, C subset A of C
there exist a ball whose radius is less than diameter of A centered at a point of A which
contains A.

In the following, we exhibit large classes of spaces with normal structure.

Proposition (6.0)
Every uniformly convex set in X, containing as least two different point Z;, Z,.

= Z,+7Z
Suppose O is the diameter of C and ° Yol +2:) for any Z€C, proposition (1.2) given
us, from
Nz-21<0:lZ,~Z,l1<0  =lZ-Z,1I< {1‘5(”201 =2, 11}
%{(Z_Zl)+(z _Zz)}:%{(z _Zz)}
Since =1-1,

The above inequality implies that C is contained in the ball of radius, say, r, less than
O centered at Zo , that is, < € B(Z,,r)>CcB,(Z,)
Where " =Sup{//z, —2/l:zeC}

Proposition (7.0)
Every convex and impact subset of a Banach space normal structure.

Proof

We proof this by this contradiction that is, we shall assume that a compact convex subset
of C of a Banach space X does not have normal structure. Then we shall generate a sequence,
which will contradict the hypothesis of compactness.

Suppose C does not have normal structure, then we may assume that all point of C are
diamental for C. let Z, be the diameter of C, we shall construct a sequence Z, Z,.............
Of point of C that

Nz, -z,ll=d (i,j=12,..... i # j)
To do this, we choose Z,eC arbitrary and assume that Z,Z3,...................... Z, have
already been chosen.
By the convexity of C
}/(Z1 F oo +Z.) . _ o
n is a point of C and thus by assumption, is diamental for C. by

the compactness of C, the “Sup” is achieved in C so that we can find a point Z,Z,,€C guch
that
HNZ,,—Z +.... +Z, 1

n
Consequently, //Zy+1-Z;// =d for j =1..,...

Which means that the sequences /{Z,} n=1 has no convergent subsequence, and thus has
no cluster value in C. this contradicts the compactness of C and completes the proof.

We observe that if a convex set C has normal structure, then so does every convex subset
of C. in particular, if the whole space X has normal structure, then every convex subset of X
has normal structure. This follows from the definition.

Some Banach space does not have the following.
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Example
1. The Space X = C(0,1) with Sup norm does not have normal structure.

2. The space X = L; (0,27) does not have normal structure.

3. The space X = I; does not have normal structure. Is called a retracting mapping.
Definition (3.4.10)
X is aretract of Y, if XCY and there exist a continuous mapping ¢ .
Lemma (3.4.10)

Let M be a closed convex subset of a Hilbert space. If T is a non-expansive mapping

of M into H, then I-T is a restriction to M of a monotone operator.
Proof

Let r be the metric retraction of H into H, for
(I-Tx = (I-TR), x-y)
=lIx-yII* = (Trx-Try, X-y)
>[I X -ylI? = IITex - Tryll 11 -yl

>0
I-Tr is monotone
The retractiontoM I =Tris 1 =T
Lemma (3.4.10)**
If T is monotone and Xg and Y, are normal of H such that Tx = Y,
Proof
Forany Y in H and T>0
Let y: = Xo +tyo
With y- y; then (Ty; — Yo, y) =0 so that

x,yeH.

(Tyt - Yo, y) 2 (yOTXO ' y)
Let I 0%, then Ty, - Ty,
So that (yOTXO ) y)
Then Yo=Tx
(3.4.11) Conjectures

(1) Let M be a be a convex subset of a normal linear space L let T be a non-expansive
mapping on M into L, Then for 0<t<1, the mapping St = tI(1- t)T is non-expansive and the
same set of fixed points is T.

If TMCM, then St <Cm

In fact, by kransnoseleki, we have the following conjectives.

(2). Consider a mapping

T:M—L Where T is non-expensive, L is a normed linear space MCL and convex, then if

G = I +T * * *
%( ) G is non-expansive and the exists X &M such that GX™ = X
AlSO, Xn+1 = ﬂ’xm + (1_ ﬂ“)Txn

2(07) is true in a uniformly convex space.

Conclusion
We have examined in this paper project, the non-expansive mapping and the fixed point
theorem. We have also been able to show that classes Banach of spaces with normal

(1< p<oo)

structures are examples of uniformly convex spaces. Thus, the Lp space are

classical examples of uniformly convex spaces.
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Therefore, is application a non-expensive operator will have solution on these spaces.
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