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1.1 Introduction
There are many different type of integral equations which also include Volterra and fredholm ones of second and

first kind. A Volterra integral equation (VIE) of the second kind has the form

X

V(X) = (x)+ [ K(x t,v(t))dt,a < x < X, (11)
a

and a Fredholm of integral equation (FIE)of the second kind has the form

v(x) =w (x)+ ji K (x,t,v(t))dt,a < x < b.

The kernel K (x,t, v (t)) in both cases is either continuous in all its three variable, or weakly singular

for example of the form

K (x tv () = L)
Xt

Where H (X,t,V(t)) is continuous in all its three variables.
VIEs of the second kind in the form (1.1) with weakly singular kernels of the form (1.2):

X

0 < B <1, (1.2)

V(X) =y (x)+ [ K (x tv(t)dt,0 <t < x< X, L3)
0
With
H yUv(t
K (x,t,v(t)) = |(>)<(—t\|/ﬂ( D 0ca<10<t<x<X, L)
And
H (x,t,v(t)) = cv(t) (15)

Where C is a constant.
This is, we are considering VIEs of the form:

v (t) dt.

v(x):y/(x)+cjﬁ

(1.6)
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In the order to solve these equation we will make we will make use of generalized Newton-cotes quadrature
rules ([6],p. 47, [3], p. 864). Comparisons are made with a numerical approach using the conversion to ODEs
concept by Abdalkhani ([1]).

Notation preliminaries: In all methods we consider a mesh of the form:

0 = X, < X; < X, < uvnnnn, < X, = X (1.7)

The stepsize is defined h; = X;,, — Xx;, 1 =1,2,3...... , n.
1.2 Generalized Newton Cotes

If we consider VIEs with weakly singular kernels of the form:

oo v (t)
Vix) =y (x)+c[—tY gy, 18
v { — (18)

And discretiseat X = X ; given by (1.7), we have that:

X t
v(xi)=w(xi)+cJ‘Ldt:> (1.9)

0 Xi - t

-1 X+t V(t)

V(Xi):W(Xi)"'CZ . _ 1

I
]

dt (1.10)

j j
Using a lagrange interpolating polynomial we approximate the u(t) inside the integral with Io (t)Vj + |1 (t)Vj+1
SO we get:
—1 g (v + 1) ()

V(X)) =y (x;)+c) — —dt < (1.11)

i=1 X, X;

v(x)_y/(x)+cz v, flﬂdt+vj+l jrl () dt

1.12
J X; —t X X, —t (1.12)
Or
X i-1
vi{l—cJ‘ !, (t) dt}
X1 \/Xi -t
i-1 Xj+1 |j(t) i—2 Xj+1 |j(t)
=y (X;)+¢C v J. ——~ _dt+c), Vi L dt (1.13)
-1 X X, — 1 -1 X, X, — 1t
We have that
. t— Xx.
9 (1) = ——— (1.14)
Xj - Xj+1
17 (t) L= X
= 1.15
' X o1 — X (1.15)
And we also have
B
dt
(ZaAyB) = =
1 _/[ > 1 (1.16)
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tdt

B
l,(z ,A,B) = _—
? { JZ -t
With the help of these integrals we can rewrite the above equation in order to compute the desire solution : for
example:

(1.17)

j+1 IJ t 1 ]+1t X .

J‘ o( ) dt J‘ i+l gt
X X; -t Xj = X4 X X; -t

_ 1 J' t dt XJ+1I dt -
Xj = Xja X X; =t X X; — 1

T b (V) dt = 1 {I (X, X, X )= X — L (X, X, X )}
X \/ﬁ Xj_Xj+1 T et SR A (1.18)

i

1.3 A numerical approach using interpolating polynomials based on Abdalkhani ([1])
if in (1.4)we replace (X —t)fﬁ by a polynomial of degree N in x and t, PN,a (X —t) then (1.3)

becomes V (X) = ¥ (X) + _[ Py o (x—=t)H (x,t,v(t))dt, (1.19)

Theoreml (Abdalkhani, [1], p. 251)
If we approximate (x—t)” by PN,ﬁ(X_t) given by

3

ZF(—aj N
Py s(x—1)= 2 > (n+1)(a)”Un(1—2x+2t), (1.20)

r{3)\r@-a)yme B-2a)
EILICEEY

For (x,t) € S ,where S :{(X,t)ZOStSXS X} andU_ are the chebychev polynomials of the second kind and (a),is
defined by

(a)n={ ' =0 (1.21)

a(a+1)(a+2)...(a+n-1) ifn = 123....,
Then for X € [0, X ].Wehave

[l(x-t)7 =Py ,(x-1)ldt = 0 (N 2=/ (1.22)

Chebychev polynomials of the second kind are given by the following explicit expression (cf. [16], p. 29)

[25] _
UL 00 = 3 ()7 2 @)
sin(n +1)8
U, (cos@) = s (1.24)

Theorem 2 (Abdalkhani ([1], P. 250)

Assume that (1.3) and (1.19) possess, respectively unique solution ve C(l) and W e C(l) ,and suppose that
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<e,,foral0<t<x<X. (1.25)

1

jx((x - t) 7 - Py, (x —t))dt

LetW(x) be any numerical approximation to w(x) such that (W (x) —w (x)|<e, forallx, 0 < x < X.

In addition, let K (X,t,V) be continuous in the region
Q= {(x,t,v):(x,t)e SandJu-y (x)|<B}. (1.26)
Alsolet [K (x,t,v) - K (a,t,u)[< L [v— ul. Then

v(x) - W < C,e, +C, e, (1.27)

Where C1 and C2 are real constants.
References:-

[1] Abdalkahani, J. (1990). A Numerical Approach to the solution of Abel integral equation of the second kind with the
nonsmooth solution. Journal of Computational and Applied Mathematics, 29,249-255.

[2] Allen, E. S. (1941). The Scientific work of Vito Volterra. American Mathematical Monthly, 48,516-519.

[3] Baker, C.T.H.(1977). The Numerical Solution of Integral Equations. Oxford: Clarendon Press.

[4] Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Equation. Cambridge: University
Press.

[5] Davis, P. J. and Rabinowitz, P. (1975). Method of Numerical Integration. New York: Academic Press.

[6] Linz, P. (1985). Analytical and Numerical Method for Volterra Equation. Philadelphia: SIAM.

10/4/2010

55



