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Introduction: 
Any optimization problem essentially consists of an 
objective function. Depending upon the nature of 
objective function, there is a need to either maximize 
or minimize it. For example, 
(a) Maximize the profit 
(b) Maximize the reliability of equipment 
(c) Minimize the cost 
(d) Minimize the weight of an engineering 
component or structure, etc. 
If certain constraints are imposed, then it is referred 
to as constrained optimization problem. In the 
absence of any constraint, it is an unconstrained 
problem. Linear programming (LP) methods are 
useful for the situation when objective functions as 
well as constraints are the linear functions. Such 
problems can be solved using the simplex algorithm. 
 Nonlinear programming (NLP) is referred to the 
followings: 
(a) Nonlinear objective function and linear 
constraints 
(b) Nonlinear objective function and nonlinear 
constraints 
(c) Unconstrained nonlinear objective function  

The method of optimization for constraint 
problems which involves the addition of unknown 
multiples became known by the name of its inventors 
Lagrange. Cauchy made the first application of the 
steepest descent method to solve unconstrained 
minimization problems. Despite these early 
contributions, very little progress was made until the 
middle of the twentieth century. When high speed 
digital computers made implementation of the 
optimization procedures possible and stimulated 
further research on new methods, spectacular 
advances followed, producing a massive literature on 
optimization techniques. This advancement also 
resulted in the emergence of several well defined new 
areas in optimization theory. 
 

Constrained/Unconstrained Optimization:  
Unconstrained optimization problems arise directly 
in many practical applications. If there are natural 
constraints on the variables, it is sometimes safe to 
disregard them and to assume that they have no effect 
on the optimal solution. Unconstrained problems 
arise also as reformulations of constrained 
optimization problems, in which the constraints are 
replaced by penalization terms in the objective 
function that have the effect of discouraging 
constraint violations. 
Constrained optimization problems arise from 
models that include explicit constraints on the 
variables. These constraints may be simple bounds 

such as 0 100ix  , more general linear 

constraints such as 1ix  ,or nonlinear 

inequalities that represent complex relationships 
among the variables. 
 
Newton Methods 

More than three hundred years have passed 
since a procedure for solving an algebraic equation 
was proposed by Newton in 1669 and later by 
Raphson in 1690 N. Bicanic, K.H. Johnson [5]. The 
method is now called Newton's method or the 
Newton {Raphson method and is still a central 
technique for solving nonlinear equations. Many 
topics related to Newton's method still attract 
attention from researchers. For example, the 
construction of globally convergent effective iterative 
methods for solving non differentiable equations in 
Rn or Cn is an important research area in the fields of 
numerical analysis and optimization. 

Let X and Y be Banach spaces and 

:F D X Y   be an operator where D is a 

domain of F. If F is differentiable in an open convex 
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set 0D D , then Newton's method for solving the 

equation 
F(x) = 0    (1.1) 

with a solution 
*x  is defined by the following: 

(1) Let xk be an approximation to 
*x ; 

(2) Solve the linear equation 

   ' 0k kF x F x h     (1.2) 

with respect to h, provided that  ' kF x  is 

nonsingular; 

(3) Set 1k kx x h    expecting for it to be an 

improvement to xk , where 0,1, 2, 3, ...k   

Since 

       *0 'k k kF x F x h F x F x h      

with      2
o h o h    if F’ satisfies a 

Lipschitz condition), (1.2) is a linearization 
procedure for the operator F around xk . The 
procedure first employed by Newton in 1669 for the 
cubic equation 3x3 −2x−5=0 is different from the (1), 
but it is easily verified that both are mathematically 
equivalent. The procedure (1) can also be written 

   
1

1 'k k k kx x F x F x


   ; 

0,1, 2, 3, ...k    (1.3) 

Since Raphson described in 1690 the formula (1.3) 
for a general cubic equation x3 − bx = c, the 
procedure (1.3) is also called the Newton-Raphson 
method. 
 
Quasi-Newton Methods: 

The goal of quasi-Newton methods, which are 
also called variable metric method, is not different 
from the goal of conjugate gradient method: to 
accumulate information from successive line 
minimizations so that N such line minimizations lead 
to the exact minimum of a quadratically convergent 
for more general smooth functions. Both quasi-
Newton and conjugate gradient methods require that 
you are able to compute your function’s gradient, or 
first partial derivatives, at arbitrary points. The quasi-
Newton method approach differs from the conjugate 
gradient in the way that it stores and updates the 
information that is accumulated. Instead of requiring 
intermediate storage on the order of N, the number of 
dimensions, it requires a matrix of size      N   N , 
Generally, for any moderate N, this hardly matters. 
On the other hand, there is not, as far as we know, 
any overwhelming advantage that the quasi- Newton 
method hold over the conjugate gradient techniques, 
except perhaps a historical one. Developed somewhat 
earlier, and more widely propagated, the quasi-

Newton methods have by now developed a wider 
constituency of satisfied users. 

The basic idea of quasi-newton method is to 
build up, iteratively, a good approximation to the 
inverse Hessian matrix A-1 ,i.e. to construct a 
sequence of matrices Hi  with the property:  

1lim i
i

H A


  

Even better if the limit is achieved after N iterations 
instead of  . 
The Newton-like methods are generally defined by 
the recursion  

    
1

1 0,1, 2,3, ...k k k kx x M x F x k


   

where  kM x  is usually an approximation to 

 ' *F x , These methods formally include the 

quasi-Newton and inexact Newton methods, as well 
as. 
 
Constrained Optimization: 

This discussion focuses on the constrained 
optimization problem and looks into different  
methods for solving it. Constrained optimization is 
approached somewhat differently  from 
unconstrained optimization because the goal is not to 
find the global optima. Often,  constrained 
optimization methods use unconstrained optimization 
as a sub-step. 

The standard form of the constrained 
optimization problem is as follows: 

 

 

 

0; 1, 2...

0; 1, 2...

j

i

Min f x

Subject to g x j p

h x i q

 

 

      (1.4) 

Where  f x   is the objective function to be 

minimized,  jg x  are a set of inequality 

constraints, and  ih x are a set of equality 

constraints 
 
Karush Kuhn-Tucker Conditions: 

The Karush-Kuhn-Tucker (KKT) condition are 
definitely among the most important results in 
modern optimization theory. The Karush-Kuhn-
Tucker conditions provide the conditions under 
which the Lagrange multiplies associated with the 
gradient of the objective function to be positive. The 
KKT conditions were originally known as Kuhn-
Tucker condition (4). Kuhn-Tucker condition (4) 
first presented their result in 1951. It was detected 
later on that W. Karush had presented a similar result 
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way back in 1939. Thus the Kuhn-Tucker conditions 
are now known as Karush-Kuhn-Tucker (KKT) 
conditions 
 Min f(x) 

 subject to  jg (x) 0, j 1, 2, ..., m   

where f and each jg , j 1, 2, ..., m  are real-valued 

differentiable function on 
nR . Let us assume that 

0x  is a solution of (MP). Moreover assume that 

 1 0 m 0g (x ), ..., g (x )   is a linearly 

independent set of vectors. Then there exists non-

negative scalars 1 m, ......,   such that 

(i) 
m

0 j j 0
j 1

f (x ) g (x ) 0


      

(ii) j j 0g (x ) 0, j 1, 2, ..., m    

 
Successive Quadratic Programming (SQP): 

Sequential (or Successive) Quadratic 
Programming (SQP) is a technique for the solution of 
Nonlinear Programming (NLP) problems. A 
nonlinear programming problem is the minimization 
of a nonlinear objective function f(x), x ∈ Rn , of n 
variables, subject to equation and/or inequality 
constraints involving a vector of nonlinear functions 
c(x). A basic statement of the problem, useful for 
didactic purposes is 

 

  0; 1, 2...j

Min f x

Subject to c x j p 
 

 
In this formulation, equation constraints must be 

encoded as two opposed inequality constraints, that is 

c(x) = 0 is replaced by   0jc x   and − 

  0jc x  , which is usually not convenient. Thus 

in practice a more detailed formulation is appropriate, 
admitting also equations, linear constraints and 
simple bounds. One way to do this is to add slack 
variables to the constraints, which together with 
simple bounds on the natural variables, gives rise to 

 

 , 0T

Min f x

Subject to A x b c x 
 

 
Optimality in Non-linear Programming 

Optimality conditions are very important 
because they lead to the identification of optimal 
solutions. The classical approach to constrained 
optimization was developed mainly by Lagrange in 
the 18th century. Lagrange developed a novel method 

by converting the constrained problem into an 
unconstrained one and then using rules of 
unconstrained minimization to compute the required 
minimum. This method became famous as the 
method of undetermined multipliers and later on 
came to be known as the method of Lagrange 
multipliers. In the last century after the second World 
War, it became apparent that there are many 
problems of applications which involve constraints 
not in the form of equalities but in the form of 
inequalities. Thus there was the need to develop new 
mathematical ideas so that one might be able to 
develop a method of undetermined multipliers in the 
case of inequality constraints. This led to the 
development of convex analysis which still continues 
to be at the heart of the subject. But the mathematics 
one uses for proving the existence of Lagrange 
multipliers in the case of inequality constrained 
programs turned out to be simpler than the techniques 
one needs for the equality constrained case. Though 
nowadays many economists, engineers, scientists and 
mathematicians use the KKT conditions on a regular 
basis. Fritz John, who was the first to develop a 
Lagrange multiplier rule for constrained optimization 
in 1948. Fritz John gave necessary optimality criteria 
for a non-linear programming problem without 
imposing any constraint qualification. They have 

proved that if 
*x  is an optimal solution of (P), then 

there exists 

 
* * m

0r R, r R   

s.t. 
* * *T *

0r f (x ) r g(x ) 0     

 
*T *r g (x ) 0  

 
* *

0(r , r ) 0  

There is no guarantee that 
*

0r 0 . In case 

*
0r 0 , the objective functions f disappears from the 

Fritz-John conditions and we have a degenerate case. 
In order to exclude such cases, Kuhn-Tucker (4) 
introduced restrictions on the constraints. These 
restrictions are nothing but the constraint 
qualifications mentioned earlier. The Kuhn-Tucker 

necessary optimality conditions state that if 
*x  is an 

optimal solution of (P) and the function g satisfies 
certain constraint qualification then there exists 

* nr R  

s.t. 
* *T *f (x ) r g (x ) 0     

  
*T *r g (x ) 0  

  
*r 0  
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Kuhn-Tucker (4) also obtained sufficient 
optimality conditions by assuming the functions to be 
convex. Optimality conditions involving generalized 
convex functions have been studied by several 
authors, for example Singh (2), Bector and Bector 
(1), Chandra and Bector, Durga (3), etc. 

 
Conclusions:  

Generally it can be concluded that, 
mathematical or numerical optimization techniques 
can be very effective and also very efficient in 
nonlinear programming problems. These  
optimization methods are easy to use and more 
applicable in comparison with some other 
optimization methods.  
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