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ABSTRACT: This research work investigates the control and synchronization in a fourth-order chaotic system 
derived from a tunnel diode oscillatory circuit. The chaotic behavior was controlled using a recursive backstepping 
design, based on the Lyapunov stability theory. Reduced-order synchronization between the fourth-order chaotic 
system and a second-order Duffing oscillator, deduced from a tunnel diode, and a non-linear resistor circuit was 
achieved using Lyapunov stability theory. Numerical simulations are implemented to show the effectiveness of the 
proposed method. The proposed approach ensured that global stability and exponential synchronization between the 
master and the slave systems can be achieved when the systems are of different order.  
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1.0 INTRODUCTION 
 Chaotic systems are unpredictable systems, that 
are very sensitive to initial conditions, and a small 
change in initial conditions can bring about a great 
change in its output [33]. 

Recently, much attention has been attracted to 
the control of chaotic motions of electric circuits, 
particularly to synchronization of chaotic generators 
[27].  

An electrical circuit element that is of interest is 
the tunnel diode. It has a non-linear negative 
resistance region in its current-voltage curve. The 
tunnel diode was introduced by Leo Esaki in 1958. It 
differs from an ordinary or “normal” diode in that the 
doping concentration in a p-n semiconductor junction 
is sufficiently large that suitable forward biasing 
causes the electrons to quantum mechanically tunnel 
through the junction barrier rather than jumping over 
it [7]. 

Although, tunnel diodes are capable of acting as 
very fast switching devices, it suffers from the 
problem of being susceptible to unwanted signals 
from stray capacitances and inductances contained in 
the wires and contact points. 

This work involves the developing and 
analyzing various mathematical systems generated 
from a tunnel diode oscillator circuit that exhibits 
chaos, its control via recursive backstepping and 
reduced-order synchronization, between the 
generated fourth-order chaotic system and a 
second-order Duffing system. 

Since 1990, the study of chaos control and 
synchronization have become the two most common 
and leading applications of chaos control theory [28, 

29]. These two areas in the study of nonlinear 
systems is traceable to the pioneering classical chaos 
theory of Ott, Grebogi and Yorke [28], generally 
known as (OGY), and the seminal work of Pecora 
and Carrol [29]. They simultaneously reported in the 
same year, 1990. The OGY scheme [28] and the 
Pecora and Carroll scheme [29] introduced have been 
used to achieve chaos control. Subsequently, other 
methods have been proposed to control chaos. 

These methods include: adaptive control [2, 8], 
backstepping design [3, 19, 39], and sliding mode 
control [16, 18], feedback controls [34, 35], to name 
a few. Chaos synchronization has been successfully 
carried out with identical systems, and non-identical 
systems using various algorithms.  

The chaos theory approach has made it 
possible for extensive studies of chaos 
synchronization using various linear and nonlinear 
controls. The nonlinear controls include; the 
backstepping design [37] and active control [1] 
methods which have attracted the interest of 
researchers in this field due to the efficiency of the 
methods. These methods have been employed to 
synchronize both identical and non-identical systems. 

The process of synchronization involves two 
identical or non-identical systems being coupled in 
such a way that the solution of one always converge 
to the solution of the other, independently of their 
initial conditions. This phenomenon can be termed as 
Master-Slave in order to differentiate it from the 
other phenomena, such as the Phase locking of 
population of coupled oscillators. 

The Master-Slave Synchronization has been 
extensively applied in the control of chaos and 
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chaotic signal masking. 
 

2.0 THEORETICAL BACKGROUND 
Chaos control in nonlinear dynamical systems 

may be achieved by various types of synchronization 
schemes, such as Adaptive control [9], Active control 
[13], Sliding mode control [17], Backstepping [38], 
Active-backstepping design [42], etc. 

The backsteppiing method is a technique for 
stabilizing control of a special class of nonlinear 
dynamical systems that have been developed in 1990 
[3]. Lyapunov technique has been proven to be the 
most efficient for investigating stability of 
equilibrium point [24]. 

Asymptotic stability can also be used to show 
boundedness of the solutions, even if the system has 
no equilibrium point. A combination of backstepping 
method and Lyapunov technique yield a flexible 
control [24]. The idea of synchronizing two identical 
chaotic systems that starts from different initial 
conditions consist of linking the trajectory of one 
system to the same values in the other system so that 
they remain in step with each other, through 
transmission of a signal [15] 

The occurrence of chaos in non-autonomous 
systems can be in the two-dimensional models, such 
as in Lorenz [22] and Rössler [32] systems that have 
been widely studied. Electronic circuits that consist 
of two nonlinear element can used to verify 
theoretical predictions. As an example in nonlinear 
Duffing forced oscillation [12] and the nonlinear 
Chua’s circuit, built and experimentally examined 
[23]. 

The chaotic dynamic system can be observed 
in many nonlinear circuits and mechanical systems, 
which has a significant research topic in physics, 
mathematics, and engineering communities, [24].  

Chaos control and reduced-order 
synchronization in a third-order chaotic system 
derived from the rigid body dynamics has been 
carefully studied and successfully implemented [20]. 
A recursive backstepping control was designed based 
on Lyapunov stability theory to eliminate the chaotic 
behaviour. Reduced-order synchronization was 
achieved between the new system and a second-order 
Duffing oscillator, using a generalized 
active-backstepping approach based on Lyapunov 
stability theory.  

Reduced-order synchronization of certain 
chaotic systems, based upon the parameters 
modulation and the adaptive control techniques was 
studied and successfully applied to two examples: 
generalized Lorenz system (fourth order) and Lu 
system (third order); Rossler hyperchaotic system 
(fourth order) and Rossler system (third order) [26]. 
The response system known as the drive system was 

controlled, even though their orders are different and 
their parameters are unknown.  

The chaotic synchronization of third-order 
systems and second-order driven oscillator was 
studied [30]. Such a problem is related to 
synchronization of strictly different chaotic systems. 
This shows that dynamical evolution of second-order 
driven oscillators can be synchronized with the 
canonical projection of a third-order chaotic system. 
In this sense, it is said that synchronization is 
achieved in reduced order. Duffing equation is chosen 
as slave system whereas Chua oscillator is defined as 
master system. The synchronization scheme has 
nonlinear feedback structure. The reduced-order 
synchronization was attained in a practical sense. 
 
2.1 Chaos control based on recursive 
Backstepping approach 
A chaotic system in “strict-feedback” form as shown 
below: 
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where 1 2[ , ,..., ]T n
nx x x x  are the state 

variables of the system f1 is a linear function, 

( 2,3,..., 1)if i n  are nonlinear functions and 

fn+1(t) is a periodic function of time. 
To control the chaotic system in the form (1) using 
recursive backstepping control, (1) is expressed as 
follows: 
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  (2)  

Where ( ) ( 2,3,..., )iu t i n are control functions. 

Now, consider a known, bounded and smooth 
reference model given as: 

( , ), 1 ,ri ri rx f x t i m n m     

Where xr = [xr1, xr2, …, xrm]T  Rm are the state 

variables; fri(:), (i = 1, 2, …, m) are known smooth 
nonlinear function with their jth derivatives uniformly 
bounded in t.  
The objective is to design recursive backstepping 
controllers for system (1) that guarantees globally 
stability and forces the output x(t) of system (1) to 
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asymptotically track the output xr(t) of the reference 

model, in order that; | | 0,rx x as t      

2.2 Reduced-order Synchronization 
In a case where the master and slave systems 

have known and same parameters as well as same 
order, it is convenient and easy to achieve 
synchronization using the active-backstepping design 
approach as proposed in [40]. Synchronization can 
still be possible when the systems to be synchronized 
are different in structure and order, as shown below. 

Consider a driver chaotic system 
Systems (15) and (16), three different cases of 

synchronization problem are possible. 

( )x Ax f x              (3)  

Where x = (x1, x2, …,xn)
T  Rn , A  Rn × Rn, A is a 

constant system matrix and f(x) is nonlinear function 
which is continuous and differentiable. The slave 
system is given by 

( ) ( )y By f y u t                (4) 

Where y = (y1, y2, …,ym)T  Rm , B  Rm × Rm, u(t) 
= (u1(t), u2(t), …, um(t))T  Rm, (m < n), and u(t) is 
the control inputs. f(y) satisfies the conditions of f(x) 
in equation (3). For the master-slave system (3) and 
(4) three different cases of synchronization problems 
are possible. 
Case (1): If A = B, f(x) = f(y) and n = m, then system 
(3) and (4) are identical provided u(t) = 0; and the 
problem is identical synchronization as presented by 
[10]. Identical synchronization has been adequately 
investigated by various approaches. 
Case (2): If A ≠ B, and/or f(x) ≠ f(y) (n = m), the 
problem is that of non-identical systems of the same 
order. 
Case (3): If A more general and challenging case is 
when case (2) holds and n ≠ m (n > m) studied in [20, 
26, 30]. In these references the two systems are 
strictly different both in structure and order. 
Definition: If there exist appropriate controller u(t) 
satisfying for all x, y, e  Rm, 

 ⃦ =  ⃦ = 0, then the 
master-slave will synchronize. 
Considering the case (3), the error dynamics between 
the two systems (3) and (4) is   

 =  –  = Ce + f(x) – f(y) + u(t),    (5) 
Where C = A – B is the matrix of the linear part of the 
error dynamics parameter and e = x – y. By choosing 
an appropriate Lyapunov function for the system (6), 
for instance 

V =  2;      (6) 

Its first derivative along the error dynamics being 

 = e[Ce + f(x) – f(y) + u(t)]      (7) 
Can be made negative definite. 

Proposition: If u(t) is chosen such that u(t) = –e – Ce 

– f(x) + f(y), the  < 0, is negative definite and the 
error states asymptotically converge to zero, i.e., the 
master system (3) and the slave system (4) 
asymptotically synchronized. 

Since the controller u(t) does not change the 
equilibrium (0, 0, 0) of the error system (5), then the 
proposed controller achieves the required 
synchronization. 
 
3.0 MODELS AND MATHEMATICAL 
FORMULATION 
3.1  Model of the tunnel diode chaotic circuit 
(Master system)  
   L1    R1        L2   R2  
      
 
          1                    2                  3 
 
   
    E=E0Sin(wt)   C1          C2    D     
 
 
 
 
                 Figure 1 
 

The nonlinear oscillator circuit is shown 
above (Figure 1). It consist of two linear resistors R1 

and R2, two inductors L1 and L2, two capacitors C1 
and C2, and a tunnel diode connected as shown in the 
figure with a sinusoidal voltage source.  
3.2  Electric circuit model of the Slave system 
    I     R             n   
              
        1               2           3  
           IC      iD  
 
      E=E0Cos(wt)     C    D       NL 
 
 
 
      
 
                 Figure 2 
         The circuit model of the slave system is 
shown above (Figure 2). It consist of a linear resistor R, 
capacitor C, a tunnel diode D, a nonlinear resistor NL, 
and a sinusoidal voltage source E. 
 
3.2 Mathematical formulation of the master 
system 

Considering figure (1) and using Kirchoff’s 
Voltage Law (KVL), From Loop 1: 

E = L1 IL1 + IL1R1 + VC1      (8)  
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 IL1=  (E0Sin(wt) – IL1R1 – VC1)       (9) 

From Loop 2: 

L2  IL2 = VC1 – VC2 – IL2R2     (10) 

Using Kirchoff’s Current Law (KCL), 

C2  VC2 = IL2 – ID      (11) 

Where ID = –aVC2 + bVC2
3  

C2  VC2 = IL2 + aVC2 + bVC2
3     (12)  

 and   

C1  VC1 = IL1 – IL2      (13)  

 re-writing (10), (11), (12), and (13), we have 

 IL1 = (E0Sin(wt) – IL1R1 – VC1)    (14)  

 IL2 =  (VC1 – VC2 – IL2R2)    (15) 

 VC1=  (IL1 – IL2)     (16) 

 VC2 =  (IL2 + aVC2 + bVC2
3)   (17) 

Let  IL1 = x1, IL2 = x2, VC1= x3, VC2 = x4, and setting 

E0  = a1, R1  = a2,  = a3,  = b1, R2  = b2, 

 = k1,  = k2, a  = k3, and b  = k4  

Hence, the chaotic system that figure 1 represents is 
shown below (18)  

1 = a1Sin(wt) – a2x1– a3x3  

2 = b1x3 – b1x4 – b2x2         (18) 

3 = k1(x1 – x2)  

4 = k2x2 + k3x4 – k4x4
3  

 
3.3 Mathematical formulation of the slave system 
Considering figure 2, the current passing n, through 
the nonlinear resistor, NL is given as 
n = a1  + a3

3       (19) 
and for the tunnel diode D, we have 
iD = – a2VD + b2VD

3      (20) 
Using KCL: 

I = C  + n + iD         (21) 

From Loops (2 and 3), figure 2: 

VC = VL = VD = L  =  =     (22) 

 =  = L  =       (23) 

Substituting, (19), (20), and (23), into (21), results to 

 I = C  + a1  + a3
3 – a2VD + b2VD

3  (24) 
Also, substituting (23) into (24), gives 

I = C  + a1  + a3
3 – a2  + b2

3   (25) 
 Using KVL and considering Loop (1) of figure 2 
E0Cos(wt) = IR + V1      (26) 
 Substituting (25) in (26) results to 

 (E0Cos(wt)) = C  + a1  + a3
3 – a2  + b2

3+   

and 

 (E0Cos(wt)) =  +  (  – a2)  +  b2
3+  

a1  +  a3
3               (27) 

If we define  = x,  =  (  – a2), k =  b2, a =  

a1, b =  a3, and B =  E0, we have 

BCos(wt) =  +  + b 3 + ax + kx3,  
 or    

 +  + b 3 + ax + kx3 = BCos(wt)    (28) 
Equation (28), is a form of Duffing equation, 
depending on the value of k, and can be expressed as 
system of equations as follows; 
 = y 
 = BCos(wt) – y – ax – bx3 – ky3   (29) 

Hence, equation (29) is the slave system to be used in 
this work. 
 
3.4  Chaos control of the master system 
The time evolution of the system currents and voltages 
are represented by equation (18) re-written as shown 
below as equation (30). 

1 = a1Sin(wt) – a2x1– a3x3  

2 = b1x3 – b1x4 – b2x2      (30) 

3 = k1(x1 – x2)  

4 = k2x2 + k3x4 – k4x4
3  

The above system is chaotic and can be controlled by 
introducing control functions U1(t), U2(t), U3(t), and 
U4(t) at the inputs which are to be determined. So 
equation (30) becomes 

1 = a1Sin(wt) – a2x1– a3x3 + U1(t)  

2 = b1x3 – b1x4 – b2x2 + U2(t)    (31) 

3 = k1(x1 – x2) + U3(t) 

4 = k2x2 + k3x4 – k4x4
3 + U4(t) 

The objective is to design recursive backstepping 
controllers for the system (30) that guarantees global 
stability in such a way as to force the output of x(t) of 
the system (30) to asymptotically track the output xid 
of the reference model, which means that 
|x – xid|  0, as t   
The control input Ui(t), i = 1, 2, 3, 4 to be determined 
such that the state variables xi (i = 1, 2, 3, 4) of the 
system (31), can be assigned desired values xid , i = 1, 
2, 3, 4 respectively. 
The error states are defined as follows 

1 1 1

2 2 2

3 3 3

4 4 4

d

d

d

d

e x x

e x x

e x x

e x x

  
  


  
  

                (32)  

In order to design the control function Ui(t), i = 1, 2, 
3, 4, we set 

1 1

2 1 1

3 2 1 3 2

4 4 1 5 2 6 3

( )d

d

d

d

x x f t

x C e

x C e C e

x C e C e C e

  
 


  
   

     (33) 

where Ci, i = 1, 2, 3, 4, 5, 6 are control parameters to 
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be chosen appropriately, by substituting (32) into (33), 
we get the error dynamics 
e1 = x1 – f(t) 

e2 = x2 – C1e1 

e3 = x3 – C2e1 + C3e2  
e4 = x4 – C4e1 + C5e2 + C6e3    (34) 
Differentiating (34) w.r.t. time 

1 = 1 – (t) 

2 = 2 – C1 1 

3 = 3 – C2 1 – C3 2 

4 = 4 – C4 1 – C5 2 – C6 3    (35) 
From (34) 
x1 = e1+ f(t) 
x2 = e2 + C1e1 
x3 = e3 + C2e1+ C3e1 
x4 = e4 + C4e1+ C5e2 + C6e3    (36) 
Substituting (36) into (31), gives 

1 = a1Sin(wt) – a2(e1+ f(t)) – a3(e3 + C2e1+ C3e1) + 
U1(t) 
 2 = b1(e3 + C2e1+ C3e1) – b1(e4 + C4e1+ C5e2 + C6e3) 
– b2(e2 + C1e1) + U2(t)     

3 = k1(e1+ f(t) – e2 – C1e1) + U3(t) 
 4 = k2(e2 + C1e1) + k3(e4 + C4e1+ C5e2 + C6e3) – k4(e4 
+ C4e1+ C5e2 + C6e3)

3 + U4(t)    (37) 
Substituting (37) into (35), results to 

1 = a1Sin(wt) – a2(e1+ f(t)) – a3(e3 + C2e1+ C3e1) – (t) 
+ U1(t) 

2 = b1(e3 + C2e1+ C3e1) – b1(e4 + C4e1+ C5e2 + C6e3) 
– b2(e2 + C1e1) – C1 1+ U2(t) 

3 = k1(e1+ f(t) – e2 – C1e1) – C2 1 – C3 2+ U3(t) 

4 = k2(e2 + C1e1) + k3(e4 + C4e1+ C5e2 + C6e3) – k4(e4 
+ C4e1+ C5e2 + C6e3)

3
 – C4 1 – C5 2 – C6 3+ U4(t) 

(38) 
In order to stabilize the error system (38) at the 
equilibrium position, we consider the Lyapunov 
function of the form 

V =  i
2       (39)  

V = (e1
2 + e2

2 + e3
2 + e4

2)    (40)  

 = e1 1 + e2 2 + e3 3 + e4 4      (41) 
To satisfy the condition for asymptotic stability of the 
error dynamics (38) necessary for controlling chaos, 
we substitute (38) into (41) and choose Ui(t), i = 1, 2, 3, 
4 such that the derivative of the Lyapunov function (39) 
is negative definite as follows 

 = e1[a1Sin(wt) – a2(e1+ f(t)) – a3(e3 + C2e1+ C3e1) – 

(t) + U1(t)] + e2[b1(e3 + C2e1+ C3e1) – b1(e4 + C4e1+ 
C5e2 + C6e3) – b2(e2 + C1e1) – C1 1+ U2(t)] + e3[k1(e1+ 
f(t) – e2 – C1e1) – C2 1 – C3 2+ U3(t)] + e4[k2(e2 + C1e1) 
+ k3(e4 + C4e1+ C5e2 + C6e3) – k4(e4 + C4e1+ C5e2 + 
C6e3)

3
 – C4 1 – C5 2 – C6 3+ U4(t)]    (42) 

From Lasalle-Yoshizawa Theorem, 

 = – (e1
2 + e2

2 + e3
2 + e4

2) < 0    (43) 
is negative definite for the controller to effectively 
control the system and not change the equilibrium of 

the system. 
Comparing (42) and (43), 

a1Sin(wt) – a2(e1+ f(t)) – a3(e3 + C2e1+ C3e1) – (t) + 
U1(t) = –e1 
b1(e3 + C2e1+ C3e1) – b1(e4 + C4e1+ C5e2 + C6e3) – 
b2(e2 + C1e1) – C1 1+ U2(t) = –e2 

k1(e1+ f(t) – e2 – C1e1) – C2 1 – C3 2+ U3(t) = –e3 
k2(e2 + C1e1) + k3(e4 + C4e1+ C5e2 + C6e3) – k4(e4 + 
C4e1+ C5e2 + C6e3)

3
 – C4 1 – C5 2 – C6 3+ U4(t) = –e4

  (44) 
From (44), we have that 
U1(t) = – a1Sin(wt) + a2(e1+ f(t)) – a3(e3 + C2e1+ C3e1) 

+ (t) –e1 
U2(t) = –b1(e3 + C2e1+ C3e1) + b1(e4 + C4e1+ C5e2 + 
C6e3) + b2(e2 + C1e1) + C1 1–e2 
U3(t) = – k1(e1+ f(t) – e2 – C1e1) + C2 1 + C3 2 – e3 
U4(t) = – k2(e2 + C1e1) – k3(e4 + C4e1+ C5e2 + C6e3) + 
k4(e4 + C4e1+ C5e2 + C6e3)

3
 + C4 1 + C5 2 + C6 3 – e4

  (45) 
Where Ui(t), i = 1, 2, 3, 4 in (45) are the respective 
controllers for which the parameters Ci (i = 1, 2, 3, 4, 

5, 6), and functions f(t) and (t) are to be determined 
in computer simulation in order to effectively control 
the chaotic system (30).  
Thus inserting the respective values of the controllers 
into (31), results to 

1 = a1Sin(wt) – a2x1 – a3x3 + [a1Sin(wt) + a2(e1+ f(t)) – 

a3(e3 + C2e1+ C3e1) + (t) – e1] 
 2 = b1x3 – b1x4 – b2x2 +[ – k1(e1+ f(t) – e2 – C1e1) + 
C2 1 + C3 2 – e3]    
 3 = k1(x1 – x2) + [– k1(e1+ f(t) – e2 – C1e1) + C2 1 + 
C3 2 – e3] 
 4 = k2x2 + k3x4 – k4x4

3 + [– k2(e2 + C1e1) – k3(e4 + 
C4e1+ C5e2 + C6e3) + k4(e4 + C4e1+ C5e2 + C6e3)

3
 + 

C4 1 + C5 2 + C6 3 – e4]           (46) 
Equation (46), is to be simulated with the control 
parameters and functions to determine the controllers 
in (45). 
From the computational result carried out, system (30) 
was effectively controlled with only C1 = C2 = 1 and 

C3 = C4 = C5 = C6 = f(t) = (t) = 0, which simplify the 
controllers in (45) to  
U1(t) = – a1Sin(wt) + a2e1 – a3(e3 + e1) – e1 
U2(t) = –b1(e3 + e1) + b1e4 + b2(e2 + e1) + 1–e2 
U3(t) = k1e2 + 1 – e3 
U4(t) = – k2(e2 + e1) – k3e4 + k4e4

3
 – e4   (47) 

and (46) results to 
 1 = a1Sin(wt) – a2x1 – a3x3 + [– a1Sin(wt) + a2e1 – 
a3(e3 + e1) – e1] 

2 = b1x3 – b1x4 – b2x2 + [–b1(e3 + e1) + b1e4 + b2(e2 + 
e1) + 1–e2] 
 3 = k1(x1 – x2) + [k1e2 + 1 – e3]          (48) 
 4 = k2x2 + k3x4 – k4x4

3 + [– k2(e2 + e1) – k3e4 + k4e4
3
 – 

e4] 
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3.5 REDUCED-ORDER SYNCHRONIZATION 

OF THE MASTER SYSTEM AND THE 
DUFFING SYSTEM. 

In this case, system (18) is taken as the master 
system, while the Duffing’s equation (29) is used as 
the slave system. The synchronization will be obtained 
in reduced-order as follows;  

MASTER SYSTEM: 

1 = a1Sin(wt) – a2x1– a3x3  

2 = b1x3 – b1x4 – b2x2     

3 = k1(x1 – x2)  

4 = k2x2 + k3x4 – k4x4
3      (47) 

SLAVE SYSTEM: 

1 = y2 

2 = BCos(wt) – y2 – ay1 – by1
3 – ky1

3  (48) 
To drive the state variables (y1, y2) to (x1, x2), we 
introduce the controllers U(t) = (U1(t), U2 (t)) to (48) 
and set k = 0 to give the required Duffing system. 

1 = y2 + U1(t) 

2 = BCos(wt) – y2 – ay1 – by1
3 + U2(t)  (49) 

The synchronization error is defined as 
e1 = x1– y1   
e2 = x2– y2       (50) 
and 

1 = 1 – 1 

1 = 2 – 2       (51) 
Subtracting (49) from (47), we have the following 
error dynamics 

1 = a1Sin(wt) – a2x1 – a3x3 – y2 – U1(t) 

2 = b1x3 – b1x4 – b2x2 – BCos(wt) + y2 + ay1 + by1
3– 

U2(t) (52) 
Let the Lyapunov function be defined as 

V(e1, e2) = (e1
2 + e2

2)     (53) 

 = e1 1 + e2 2       (54) 
Substituting (52) into (54), results to 

 = e1(a1Sin(wt) – a2x1 – a3x3 – y2 – U1(t)) + e2(b1x3 – 
b1x4 – b2x2 – BCos(wt) + y2 + ay1 + by1

3– U2(t)) (55) 

To ensure that  is negative definite and thus satisfy 
the Lasalle-Yoshisawa theorem  

 = – (e1
2 + e2

2) < 0      (56) 
Hence , 
a1Sin(wt) – a2x1 – a3x3 – y2 – U1(t) = – e1b1x3 – b1x4 – 
b2x2 – BCos(wt) + y2 + ay1 + by1

3– U2(t) = – e2 (57) 
and,  
U1(t) = a1Sin(wt) – a2x1 – a3x3 – y2 + e1 
U2(t) = b1x3 – b1x4 – b2x2 – BCos(wt) + y2 + ay1 + 
by1

3+ e2                (58) 
(58), represents the controllers necessary to 
synchronize the master and slave systems by 
reduce-order technique.  

The error dynamics e1 and e2, between the 
fourth and the second order chaotic systems, showing 
reduced-order synchronization under the action of the 

control is shown in the next paragraph. 
 

4.0  NUMERICAL RESULTS AND 
DISCUSSION 
4.1 NUMERICAL RESULTS 

The solution of the set of equations in chapter 
three can be shown graphically with each of the 
dependent variables xi and yi as a function of time t, 
the independent variable. 
 The numerical solution of the chaotic system 
(47), (the master system) and (48), (the slave system) 
are shown using MATLAB numerical simulation [4, 5, 
14, 25, 31, 36], Figure 3 and Figure 4 respectively in 
appendix.  
 The parameters of the master system are; w=77, 
a1 = 37, a2 = 0.01, a3 = 0.2, b1 = 0.001, b2 = 0.02, k1 = 
10000, k2 = 4000, k3 = 1000, k4 = 70000, and the initial 
conditions (x1, x2, x3, x4) = (– 0.005, – 0.001, 0.1, – 
0.5). The parameters for the slave system are; B = 0.3, 
w = 1.0,  = 0.15, a = 1, b = 1, k = 0, and the initial 
conditions are (y1, y2) = (0, 0). The initial conditions 
for the error states (e1, e2) = (0, 0). The parameters of 
the systems above are used in all the results plotted. 
 
4.2 DISCUSSION OF RESULTS 

The chaotic behaviour of the master system is 
shown in Figure 3(a) to (d). These are the time series 
that depicts the chaotic states of the system when 
controllers are not activated. When the time series was 
plotted at various time range, the systems still show 
chaotic behaviour. Also, one positive Lyapunov 
exponent is a clear evidence of a chaotic system as 
shown in Figure 12. 

Figure 4, shows the phase portrait of the 
chaotic system when controllers are not activated. 
Figure 5 (a – f), represent the Poincaré sections of the 
master system, while Figure 5(g), shows that of the 
slave system. These Poincaré sections/maps are 
evidence of the chaotic nature of the systems. 

The time series and phase portraits of the slave 
system is clearly shown in Figure 6. The time series 
here shows unrepeated states of the slave system, 
which is an attribute of a chaotic system.  

When the system controllers (47) are activated 
at t  0, the system is forced to a stable equilibrium as 
is shown in the error dynamics in Figure 7.  

When controls are activated at t  30, the 
system is stabilized, and is totally controlled as shown 
in figure 8. 

Figure 9 shows the synchronized states of 
master and the slave system, where Figure 9(a) 
represents the synchronization of x1,y1 against time 
while Figure 9(b) is the synchronization of x2,y2 
against time. The error dynamics of the synchronized 
state is shown in Figure 10.The error dynamics in the 
two cases are not asymptotically zero, which show the 
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effect of reduced-order method of synchronization. 
This means that reduced order synchronization may 
not lead to a total or complete synchronization of all 
the four state variables of the master system with the 
two variables of the slave system, but will only 
synchronize with the two considered variables of the 
master system and the two variables of the slave 
system.  

Figure 11 shows a plot of the Lyapunov 
exponent versus time for the master system. It shows a 
clear evidence of the chaotic nature of the system. The 
Lyapunov exponents deduced are 0.011713, 
-0.017873, -0.021901, and -55.583, having only one 
positive value. The presence of a positive Lyapunov 
exponent satisfies one of the most important tests for 
the identification of a chaotic system. 

 
5.0 CONCLUSION 

The recursive backstepping technique 
employed in this work, based on Lyapunov stability 
theory, was able to control the chaotic oscillation of 
the system to a stable equilibrium. The performance 
of theoretically designed nonlinear controllers were 
verified by numerical simulations which confirmed 
the effectiveness of the proposed controllers.  

Reduced-order synchronization was achieved 
between a new fourth-order system and a 
second-order Duffing oscillator. This study shows the 
effectiveness of the adopted technique for 
synchronization, and has been illustrated with 
numerical simulations. However, this ascertains that 
synchronization is not only possible with systems in 
the same order, but also possible with systems of 
different order.  
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Figure 3: Time series for x1, x2, x3vb , and x4 
respectively of the master system when controllers are 
not activated. 
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Figure 4: Phase portraits of the master system. 
 
 
 

http://www.mathworks.com/
http://www.mathworks.com/


Researcher 2013;5(10)                   http://www.sciencepub.net/researcher 

http://www.sciencepub.net/researcher                    researcher135@gmail.com  13 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-0.01

-0.005

0

0.005

0.01

(a)                                           X1

X
2

 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
-400

-300

-200

-100

0

100

200

300

400

(b)                                           X1

X
3

 

-2.5 -2 -1.5 -1 -0.5 0 0.5

-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

-0.06

(c)                                           X1

X
4

 

-0.01 -0.005 0 0.005 0.01 0.015
-400

-300

-200

-100

0

100

200

300

400

(d)                                           X2

X
3

 
 

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025

-0.1

-0.05

0

0.05

0.1

0.15

(e)                                           X2

X
4

 
 

-500 -400 -300 -200 -100 0 100 200 300 400 500

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(f)                                           X3

X
4

 
 
  0.8 
 
  0.6 
 
 Y2 0.4 
 
  0.2 
  
  0 
 
 -0.2       
         -0.2   0   0.2  0.4  0.6  0.8  
            (g)          Y1 
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Figure 6: (a) and (b) are the respective time series of 
the slave system (Duffing system) and (c) is its phase 
portrait. 
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Figure 7: Error dynamics of the system when 
controllers are applied at t  0. 
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Figure 8: Time response of the state variables when 
control is activated at t  30 (a) x1 variable (b) x2 
variable (c) x3 variable (d) x4 variable.  
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Figure 9 (a & b): Synchronization of the master and 
slave systems.  
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Figure 10 (a & b): The error dynamics of the 
synchronized state. 
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Figure 11: Lyapunov exponents versus time of the 
master system.  
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