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1. Introduction  

    Frames in Hilbert spaces introduced by Gabor and 

they serve as a replacement for bases, but with more 

flexibility. Later  frames were originally introduced 

by Duffin and Schaffer[2] to deal with some  

problems in non-harmonic Fourier analysis. Hilbert  
C*-modules are generalizations of Hilbert spaces by 

allowing the inner product to take values in a  C*-

algebra rather than in the field of complex numbers 

[4]. These frames are called Hilbert C*-modular 

frames or just simply modular frames. These concept 

are generalizations of some results in[7].     

   Riesz bases play important roles in the study of 

Hilbert space frame theory (cf.[6]). However, we will 
encounter several obstacles when we deal with Riesz 

bases and frames for Hilbert  C*-modules. A Riesz 

basis always has a canonical dual which is ecessarily 

a Riesz basis. In this paper we obtain a necessary and 

sufficient condition for a dual of a Riesz basis to be 

again a Riesz basis. Inparticular, we characterize 

those modular Riesz bases thatave unique duals. The 

characterization is given in terms of the properties of 

the range spaces of the analysis operators. As a 

consequence, we show that when the underlying C*-

algebra is commutative, every modular Riesz basis 
has a unique Riesz dual, although it maybe have other 

duals that are not Riesz basis.(see Example 4.2) 

 

2.Perliminaries  
    We first recall definitions and results about   

Hilbert  C*-modules, frames and Riesz basis in 

Hilbert  C*-modules. 

     In this paper N will denote the set of natural 

numbers and J will be a finite or countable subset of 

N.     

 

Definition 2.1. Let A be a (unital) C*-algebra and  H  

be a (left)A-module.  Suppose that The linear 

structures given on A and H are compatible, i.e. 

   ax a x   for every ,C a A   

and x H . Assume that there exists a mapping  

.,. : H H A   with the properties: 

  , 0i x x   for every   x H , 

  , 0ii x x   if and only if  0x  , 

 
*

, ,iii x y y x for every    ,x y H ,  

  , ,iv ax y a x y
 
for every   ,x y H ,    

and every   a A  , 

  , , ,v x y z x z y z    for every   

, ,x y z H .Then the pair  , .,.H  is called a 

(left)pre-Hilbert A-module. The map .,.  is said to 

be an A-valued inner product. If the pre-Hilbert A-

module   , .,.H  is complete with respect to the 

induced norm 

1

2,x x x  then it is called a 

Hilbert A-module. 
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    In this paper we focus on finitely and countably 

generated Hilbert A-module  over unital C*-algebra 

A. A Hilbert A-module H  is (algebraically) finitely 

generated if there exists a finite set 

 1, ..., nx x H such that every element x H  

can be expressed as an A-linear combination  

1

,
j n

j j j

j

x a x a A




  . A  Hilbert A-module  H  is 

countably generated if there exists a countable set 

 j j N
x H


  equals the norm-closure of the 

linear span (over C and A) of this set.  

 

 

 

Definition 2.2.(see [4]) Let A be a unital 

*
C  algebra and  J  be a finite or countable index 

set.  A (finite or countable) sequence   j j J
x


 of 

elements in a Hilbert  A-module  H  is said to be a  

frame for H if there exist two constants , 0C D   

such that the frame inequality  

 

(1) , , , ,j j

j J

C x x x x x x D x x


                         

holds for every  x H , where the sum in the 
middle of the  inequality (1) is convergent in norm. 

The numbers C and D are called frame bounds. The 

sequence  j j J
x


is called a (standard) Bessel 

sequence with Bessel bound D if there exists D>0 

such that  

 

, , ,j j

j J

x x x x D x x


  

 The sequence    j j J
x


satisfies the lower frame 

bound if there exists a C>0  

 

, , ,j j

j J

C x x x x x x


  if we only require 

The frame j j J
x


  is saide to be a tight frame if 

C=D, and said to be normalized if C=D=1. 

    We consider standard (normalized tight) frames on 

finitely or countably generated Hilbert A-module over 

unital  C*-algebra A. 

 

Definition 2.3.(see [4]) A frame  j j J
x


 for a 

Hilbert  A-module  H  is said to be a (standard) Riesz 

basis for H if it satisfies:   

   0ji x   for all j; 

  ii if an A-linear combination 
j j

j S

a x


  with 

coeffcients  :ja j S A  and S J is equal 

to zero, then every summand 
j ja x  is equal to zero. 

 

 

3. Dual sequences of frames and Riesz basis 

 

For a unital  C*-algebra A, let  2
A  be the  Hilbert 

A-module, see[4], define by  

 2 *( ) : .j j jj J
A a A a a converges in



 
  
 



For any standard frame   j j J
x


 of a finitely or 

countably generated Hilbert A-module H, the frame 

transform of the frame   j j J
x


is definded to be the 

map  

       2: , , j
j J

x H A x x x 


 
 

that is bounded, A-linear and adjointable with adjoint 

 

     * 2 *: , jx A H e x
j

  
 

for a standard basis   j j J
e


of the Hilbert A-

module  2
A  and all j J . See[3] 

Moreover for every x H , 
 

     
2

, , ,j j

j J

x x x x x x x  


 
 

Therefore   is one-to-one with a closed range which 

is complemented in   2
A , 

     2 *
A H Ker x    .  
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We note that  *
H   is an invertible operator and 

the frame operator  
1

*
S  



  is a positive 

invertible bounded operator on H such that for every  

x H  , 
 

, ,(2) j j j j
j J j J

x x Sx x x x Sx
 

  

 

 The sequence    j j J
Sx


is a frame for H and is 

called the canonical dual frame of j j J
x


. 

Now suppose that  j j J
x


 is a Bessel sequence of a 

finitely or countably generated   Hilbert A-module H, 

the associated analysis operator  2
:T H A

X
  

is defined by 

 

, .X j j

j J

T x x x e x H


 
 

Note that analysis operator 
XT is adjointable and 

adjoint  
*

XT fulfills 
*

X j jT e x for all j. 

 
 

Definition 3.1. Suppose that H is a  Hilbert A-module 

over a unital C*-algebra A. Let 

 j j J
x


 be a (standard) frame and   j j J

y


a 

sequence of H. Then  j j J
y


 is said to be a 

(standard)dual sequence of j j J
x


  if  

 

(3) ,x x y x
j jj J

 


 

 

Holds for all  Hx  , where the sum in (3) 

converges in norm. The pair j j J
x


 and   j j J

y


 

are called a dual frame pair when j j J
y


  is also a 

frame. 

 

 

Definition 3.2. nP be a projection on  2
A  that 

maps each element to its nth component, i,e.  

 n j j J
P x u


 , where  

0

n

ju
x if j n

if j n


 


 

For each    2

j j J
Ax x


  . 

Theorem 3.3.(see[7])Let  j j J
x


be a frame of a 

finitely or countably generated Hilbert A-module H 

over a unital C*-algebra A. then  j j J
x


is a riesz 

basis if and only if x o
j
  and 

     P Rang T Tn X X
Rang  for all 

j J , where 
XT is the analysis operator of 

 j j J
x


. 

 

 

Corollary 3.4. Suppose that j j J
x


it is a frame of 

finitely or countably generated Hilbert A-module H, 

then j j J
x


  is a Riesz basis if only if  

  i x o
j
 for each j J ; 

 ( )ii if 0c x
j jj J




 for some sequence 

   2

j j J
c A


 , then 0c x

j j
 for each 

j J . 

 

Proof.  Suppose first that j j J
x


is a Riesz basis. 

Then obvious hold conditions (i ) and (ii ). 

Now suppose that j j J
x


is a frame in H with 

conditions (i ) and (ii ). Then  0c x
j jj J




 for 

some sequence    2

j j J
c A


 , then 

0c x
j j

 for each j J . Therefore we have for , 

y Hn  , 
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0 , ,j j j j
n nj J j J

y c x y c x
 

  

* *, , ,n j j n j n n
j J

y x c x x c x c x


  

 

that we get  

 

,
,

0

x x j nny xn j j n

 
 

  
                  

Then there exists a  ny H  such that 

T y P T xn nX X
  , which this implise that  

 P T x Rang Tn X X
 therefore

   P Rang T Tn X X
  then by Theorem3.2 

 j j J
x


  is a Riesz basis. 

We end up this section with the following theorems 

which will be used in the proof of theorem 4.3. 

 

 

 

Theorem 3.5.(see[7]) Suppose that H is a finitely or 

countably generated Hilbert A-module over a unital 

C*-algebra A. Let  j j J
x


 be a frame of H with 

analysis operator  
XT , then the following statements 

are equinalent. 

 ( ) j j J
i x


  has a unique dual frame; 

 
     2 ;Xii Rang T A

 

 ( )iii if 0c x
j jj J




 for some sequence 

   2
c A

j j J



, then 0c

j
 for each j J . 

In case the equinalent conditions are satisfied, 

 j j J
x


is a Riesz basis. 

 

  

Theorem 3.6. (see[7]) Suppose that j j J
x


 is a 

Riesz basis of finitely or countably generated Hilbert 

A-module H over a unital C*-algebra A. Let 

 j j J
y


 be a sequence of H. Then the following 

statements are equinalent.   

 ( ) j j J
i y


is a dual frame of   ;j j J

x


  

 ( ) j j J
ii y


is a dual Bessel sequence of 

  ;j j J
x

   

 ( )iii for each j J   , 
1

j j jy S x z   , where 

S  is the frame operator of j j J
x


, and  j j J

z


 is 

a Bessel sequence of H satisfying , 0j jx z x   

for all x H  and j J . 

 

  

 

4.Dual modular frames for Riesz bases 

 

 The aim of section is to have a detailed investigation 

on the dual sequences Riesz bases in Hilbert  C*-

modules.  

 The following example show that in  Hilbert  C*-

modules the dual Riesz basis of  Riesz basis is not 

unique. 

 

  

Example 4.1. Let  2 2
A M C


 denote  the       

C*-algebra of all 2×2 complex matrices. Let H=A 

and for any A,B∈H  define 

*
,A B AB  . 

Then H is a Hilbert A-module.  

Let 
,

E
i j

 be the 2×2 matrix with 1 in the (i,j ) th 

entry and 0 elsewhere, where 1≤i,j≤2. Then 

 1,1 2,2,E E  is a Riesz basis of H and it is a dual of 

itself. One can check that  1,1 2,1 2,2,E E E  is also 

a dual Riesz basis of  1,1 2,2,E E . 

 

    Note that even the dual sequence of a Riesz basis 

in Hilbert  C*-modules is a Bessel sequence, but it is 

not a Riesz basis. We have the folloing example. 
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Example 4.2. Let 


 be the set of all bounded 

complex-valued sequence. For any  u u
j j N




 

and  j j N
v v


  in


 , we define  

   *,j j jj N j N
u v uuv u

 
 and 

max ,j
j N

uu


  

Then  , .A


 is a C*-algebra. Let 0H c  be 

the set of all sequences converging to zero.  

For any  ,u v H  we1 define  

 *
, .j j

j N
u v uv u v


    

Then H is a Hilbert A- module. 

Now let x e
j j
  and 

 

1, 2
1 2

1, 2

e e j
y

j e j
j

 








 

 

 then  j j J
y


 is a Bessel sequence, and satisfies 

, j j
j N

x x y x


    for all x H . Therefore, by 

theorem 3.8 in [7],  j j J
y


is a frame of H . But 

obviously  j j J
y


 is not a Riesz basis. 

      For the case of a dual sequence of a Riesz basis to 

be a Riesz basis, we have the following 

characterization. 

 

 

Theorem 4.3. Let  j j J
x


be a Riesz basis and 

 j j J
y


 a sequence of finitely or countably 

generated Hilbert A-module H over a unital C*-

algebra A. Then  j j J
y


 is a dual Riesz basis of 

 j j J
x


 if and only if for each j J , 

1
,j j jy S x z


   where S is the frame operator 

of j j J
x


  and j j J

z


  is a Bessel sequence of H 

with the property that for each
j J

  there exists  

jb A
 such that 

1

j j jz b S x


  and 

, 0j j jx x b x    holds for all x H . 

 

 

Proof.  ' ' Suppose first that j j J
y


is a dual 

Riesz basis of  j j J
x


and let 

1

j j jz y S x


   . 

Then it is obvious that  j j J
z


 is a Bessel sequence 

of H.  Now fix an n J . From  

 

,n j j
j J

y y x yn


   

 

we can ifer that  

,n n n ny y x y i.e. 

 1 1 1
,n n n n n n nS x z S x z x S x z

  
     

Consequently, we have 
1

1

,

, , .

n n n n

n n n n n n

z z x S x

S x x z z x z







 
 

 To show that  
1

, , 0n n n n n nS x x z z x z


  ,  

it sufficient to show that 
1

, , , , 0n n n n n nS x x z x z x z x


   

holds for all x H . Note that 
 

1, ,

, ,

j j j j
j J j J

j j j j
j J j J

x x y x x S x x

x z x x x z x



 

 

  

   
 

 

Which implies that , 0j j

j J

x z x


  and so  

, 0j jx z x   for all x H and j J .  

Particularly, we have , 0n nx z x   for all 

x H . This yields that , , 0n n nx z x z    and  

1, , 0n n nx z x S x  . 

Equivalently, , , 0n n nz x z x   

and  
1 , , 0n n nS x x z x  .  
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Therefore 
1

n n nz b S x ,  

where ,n n nb z x . 

From , 0n n nx z x  , we have  

, , , 0n n n ny x x z x x   for all ,x y H , 

which is equivalent to  

, , , 0n n n nx x z x x y   ,  

this implies that 

  
, , , 0x x b x x x z x xn n n n n n n 

 
 

' ' Suppose now that for each there  

j J exists
jb A  such that

1

j j jz b S x   and 

, 0j j jx x b x     holds for all x H .  

Then for all ,x y H  we have 

, , 0.j j jx x b x y   

 Equivalently, 

 
*, , 0j j jy x b x x  . 

 This implies that 
*, 0j j jy x b x   for all y H .  

Now for arbitrary x H , 

 
1

1

, ,

, ,

j j j j
j J j J

j j j j
j J j J

x y x x S x x

x z x x x S x x



 



 

  

  
 

1 *, j j j
j J

x x S x b x



    

1 *
, j j j

j J

x S x x b x x




   

 

Which implies that   j j J
y


is a dual sequence of 

 j j J
x


 , one can easily see that   j j J

y


is a 

Bessel sequence. Then by theorem 3.8 in [7], 

 j j J
y


is a dual Riesz basis of j j J

x


. To 

complete the proof, we need to show that  j j J
y


 

is a dual Riesz basis of H.  

 

If  0j j
j J

a y


 , then we have 

 

 

1 1

1

0

1 .

j j j j
j J

J j j
j J

a S x b S x

a b S x

 







  


 

Therefore 

   11 0j j ja b S x  , i.e. 

 for 0j ja x  all j J . 

 Now assume on the contrary that 0ny   for some 

n J  .  
Then 

 

1

n nz S x 
.  

It follows that 

0 ,

, ,

x x b xn n n

x x Sz x x xn n n n



  
 

holds for all x H . Let 
1

x S x n


  , we have 

1
0 ,S x x x xn n n n


     , 

 and so 0x n  , a contradiction. Then 0y
j
  for 

each j J . 

   Note that under the conditions of following 

Corollary, though a Riesz basis has a unique dual 

Riesz basis. 

 

 

Corollary 4.4.  Suppose that H is a finitely or 

countably generated Hilbert A-module over a unital 

C*-algebra A. If A is commutative, then every Riesz 
basis of H has a unique dual Riesz basis. 

 

Proof.  Choose an arbitary Riesz basis j j J
x


  of 

H. Suppose that  1

j j j J
S x z




  is a dual Riesz 

basi j j J
x


s, where S is the frame operator of 

 j j J
x


. Then by Theorem 4.3, for each j J   

there exists 
jb A  such that 

1
z b S x

j j j


   and 

, 0x x b x
j j j

  hold for all x H . 

Since A is commutative, we have 

, 0b x x x
j j j

 for all x H and j J . 

 Let 
1

jx S x


  . 
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 We have 
10 , ,j j j j j j jb x x x b s x x x   

1,j j j j j jb x s x x b x 
 
 
Which yields that 

1
0.z b S x

j j j


 
 

 

 

    The following example show that the converse of 

corollary 4.4 is not true, namely, if every  Riesz basis  

of a Hilber A-module of H has a unique dual Riesz 

basis, A is not necessarily commutative. 

 

 

 

Example 4.5.  Let  2 2A D C  denote  the       

C*-algebra of all 2×2 complex matrices. Let H=A 

and for any A,B∈H  define 

*
, .A B AB 

Then H is a Hilbert A-module.  

It is obvious  A is commutative.  

Let 
,

E
i j

 be the 2×2 matrix with 1 in the (i,j ) th 

entry and 0 elsewhere, where 1≤i,j≤2. Then 

 1,1 2,2,E E  is a Riesz basis of H, and so it has a 

unique dual Riesz basis which is itself. 

But the dual frame of  1,1 2,2,E E is not unique. For 

example , one can verify that 

 1,1 2,2 1,1 2,2,E E E E    is also a dual frame of  

   1,1 2,2,E E  For any , .C   

 
  

 

 

Example 5.5. Let 

 

0 0

0 0 0 :

0 0 0

a

H a

  
  

    
  
  

 

 
and 

  
0 0

0 : , , , ,

0

a

A b c a b c d e

d e

  
  

    
  
   

 

For any A,B∈H we define 
*,A B AB 

then H is a A-module. 

 

Note that A is not commutative. Let 

0 0

0 0 0

0 0 0

E

 
 

  
 
 

. 

 Then  E  is a Riesz basis  of H  and any Riesz 

basis of  H has the form of  E  some nonzero 

 . 

   It is easy to check that every dual Riesz basis of 

 E for each  nonzero  is unique. 
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