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Abstract: Arsenic, a metalloid, is considered nonessential for human beings. However, excess amount of As is 
extremely toxic, leading to many pathological conditions that are consistent with oxidative damage, carcinogenic 
and mutagenic properties. Arsenic compounds widely enter in environment through food chain and water supply and 
excess of them producing worldwide pollution threat. Due to this, millions of people around the world are suffering 
from arsenic toxicity which leads to major health problems including liver damage, cancer, diabetes, skin lesions and 
hyperkeratosis. In water bodies the high amount of arsenic compounds enter in the algal cells. After accumulation 
arsenic interferes with algal metabolic processes which lead to impairment of photosynthesis, respiration, depletion 
in protein, carbohydrate, lipid and cell viability. Higher amount of arsenic also induced the generation of reactive 
oxygen species (ROS). These ROS can easily oxidize different macromolecules present in the algal cells. To 
counteract arsenic toxicity, algae have evolved complex protective mechanisms to mitigate the deleterious effects 
and repair the damage caused by ROS. 
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1. Introduction 

Arsenic is a ubiquitous metalloid which is found 
in air, soil, and water bodies (Duker et al., 2005). Due 
to its potential toxicity and carcinogenic properties, it 
poses the greatest threat to living organisms including 
human beings (Abernathy et al., 1999). The long term 
exposure to arsenic may cause severe diseases like 
diabetes, skin cancer, lung cancer, bladder cancer, 
hepatocellular carcinoma, hyperpigmentation, black 
foot disease, and melanokeratosis (Brown and Ross, 
2002; Liu et al., 2001; Mukherjee et al., 2003; Saha, 
2003; Wai et al., 2003). Arsenic contamination in 
water bodies mainly occurs due to natural processes 
and anthropogenic activities. The major sources of 
arsenic contaminants are parent rock, volcanic 
eruption, industrial and household waste discharge and 
fuel combustion (Adriano, 2001). Excessive use of 
arsenic compound in agriculture and forestry practices 
(as insecticide, herbicide, rodenticide and fungicide) is 
additional source of arsenic contamination to soil and 
water (Hathaway et al., 1991). Various sources of 
arsenic contamination are summarized in figure 1. 

Arsenic concentration in natural water ranges 
from 0.5 to 5,000 μgL-1 (Smedley and Kinniburgh, 
2002). Environmental arsenic exists in both organic 
and inorganic form. Inorganic arsenic forms are 
generally toxic whereas the organic forms are 
considered as non toxic (Gochfield, 1995). Inorganic 
arsenic usually exists in two forms namely, arsenite, 
As(III), and arsenate, As(V), which are interconverted 
through redox and methylation reactions (Duker et al., 
2005; Eisler, 2004). Several studies have been 
conducted to understand the interaction of arsenic with 

various plants e.g. rice, fern, beans, spinach, tomato 
and red clover (Chakrabarty et al., 2009; Shri et al., 
2009; Srivastava et al., 2005; Stoeva et al., 2003; 
Shaibur and Kawai, 2010; Barrachina et al., 1995; 
Mascher et al., 2002). However, studies concerning 
the impact of arsenic stress on algal system are 
relatively few. Unfortunately, limited efforts have been 
made to understand the response of microalgae to 
arsenic stress. Therefore, the present article 
summarizes the responses of microalgae to arsenic. 
Arsenic contamination in natural water 

Arsenic contamination in drinking water is a 
global concern particularly in South East Asia. In 
recent years arsenic level indiscriminately increases 
due to anthropogenic activities. In contaminated water 
high amount of inorganic arsenic is found, which 
mainly exist in As(III) and As(V) forms however 
small amount of DMA (dimethylarsenic acid), MMA 
(monomethylarsonic acid) and methylated forms also 
found. Different forms of arsenic found in aqueous 
system are given in table 1.  As(III) is generally 
considered as most mobile and biologically toxic form. 
As(III) dominates under anaerobic condition whereas 
As(V)found stable under aerobic condition but more 
common than As(III) species (Duker et al., 2005). 
Arsenic accumulation in water bodies generally take 
place due to adsorption/desorption or 
oxidation/reduction process. In water sediments under 
oxidized conditions, arsenic may have precipitated by 
iron and manganese oxyhydroxide thus remain 
unavailable or available in less amount in water 
(Smedley and Kiniburgh, 2002; Kneebone et al., 2002; 
Nicholas et al., 2003). On the onset of reducing 
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condition, the reduction of As rich oxyhydroxide takes 
place that can leads to the release of arsenic, reduced 
oxyhydroxide ion, iron and manganese. In water 
ecosystem, microorganisms play active role in 
transformation of As into several biological forms. 

Oxidation of As(III) to As(V) also catalyzed by 
microoraganisms like bacteria and algae (Johnson, 
1972; Myers et al., 1973; Andreae and Klumpp, 1979; 
Sanders and Windom, 1980; Sanders, 1983).  

 

 
Figure 1. Sources of arsenic contamination in soil and water. 

 
Effect of As on algae 

Algae, the key primary producers found in an 
array of habitats ranging from fresh water to saline 
water, from hot spring to iceberg (Richmond et al., 
2003; Leon-Banares, 2004). Any change due to the 
discharge of chemicals, such as, As and other metals 
in the aquatic environment is first noticed and 
encountered by these tiny organisms. Therefore, in 
water ecosystem, algae may serve as a useful 
biomarker of arsenic exposure and for stress and 
metabolic studies (Rachlin and Grosso, 1993; 
Lustigman et al., 1995). 

Previously the interaction of algae with As has 
been reviewed by several researchers, including Rai et 
al. (1981), Yamaoka et al. (1992), Genter (1996), 
Abd-El-Monem et al. (1998), Mishra et al. (2008) and 
Bhattacharya and Pal (2010). As(V) is chemically 
similar to phosphate (PO4

3-), and readily taken up by 
phytoplankton by phosphate transporters (Sanders and 
Windom, 1980). It competes with phosphate in the 
formation of organic esters and upset the metabolic 
activities that require phosphorylation reactions. 
Plants and algae have ability to uptake more arsenate 
rather than PO4 under PO4 limited conditions (Knauer 
and Hemond, 2000). However, at high PO4 
concentration, the transport of As become reduced 
(Farhadi et al., 2013). The binding of As(III) to 
sulfhydryl groups of enzymes causes disruption of 
enzyme structure leading to enzyme inhibition (Cox, 
1995). Additionally, arsenic toxicity causes lipid 
peroxidation, protein and enzyme oxidation, GSH 

depletion, DNA oxidation and further generates 
reactive oxygen species (ROS) like, superoxide radical, 
hydroxyl radical, singlet oxygen etc (Wang et al., 1996; 
Lynn et al., 1997; Sharma et al., 2007). These ROS 
can easily oxidize various macromolecule of the cell 
(Mascher et al., 2002) and hence disrupts the dynamic 
equilibrium between the prooxidants and antioxidants 
and develop the condition known as oxidative stress 
(Scandalios, 1993). 

It has been suggested that high level of arsenic 
can inhibit the growth rate of algae (Rai et al., 1981; 
Rana and Kumar, 1974; Whitton, 1970; Stauber and 
Florence, 1989; Genter et al., 1987, 1988; Genter, 
1996). Arsenate induces a fluidization of liposome 
membrane of algal cell thus enhances the transport of 
toxicant across the membrane of algal cell and finally 
resulted into cell death (Tuan et al., 2008). Studies 
concerning the impact of As on algae found that the 
higher concentrations of As in water have been shown 
to sharply reduce the cell viability (Tuan et al., 2008) 
and to interfere with pentose phosphate pathway 
which leads to impairment in photosynthesis of alga 
(Srivastava et al., 2009; Zutshi et al., 2014). In 
addition to this, a significant reduction in protein and 
carbohydrate content of Phormidium laminosum and 
Scenedesmus acutus treated with different 
concentrations of As was also noticed 
(Abd-El-Monem et al., 1998; Bhattacharya and Pal, 
2010). Moreover, the alleviation in MDA and H2O2 
level of algal cells has been reported (Srivastava et al., 
2009; Bhattacharya and Pal, 2010).  

 
Table 1. Different forms of arsenic in aquatic environment. 

Form Arsenic compounds 
Inorganic trivalent  Sodium arsenite, arsenic trioxide, arsenic trichloride 
Inorganic pentavalent Arsenic pentaoxide, arsenic acid, arsenates (calcium arsenate, lead arsenate, sodium 

arsenate) 
Organic Methylarsenic acid, arsanilic acid, dimethylarsinic acid and arsenobetaine. 
 
 

Arsenic contamination

Anthropogenic activities

(mining, sewage, 
smelting, pesticides)

Geogenic activities (rocks 
weathering, volcanic and 

geothermal)

Biogenic activities

(plant, animal, 
microorganism, aquatic 

biota)
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To overcome the harmful effects of ROS, algal 
cells have developed a highly complex and 
intertwined antioxidant defense system which includes 
both enzymatic (superoxide dismutases, catalases, 
peroxidases) and non-enzymatic (ascorbate, 
glutathione, carotenoids and -tocopherol) 
antioxidants (Pinto et al., 2003; Tripathi and Gaur, 
2004; Tripathi et al., 2006). These components help in 
the re-establishment of redox-homeostasis by direct 
scavenging of ROS. 
Enzymatic antioxidants 

Enzymatic antioxidants actively work against 
ROS and neutralize their effect by converting them 
into less harmful products. These include superoxide 
dismutase, catalase and ascorbate peroxidase. 
Superoxide dismutase  

Superoxide dismutase (SOD) is one of the 
important antioxidant enzymes which act as first line 
of defense against ROS mediated damage (Bannister 
et al., 1987). SOD is a multimeric metalloenzyme that 
catalyze the conversion of superoxide radical (O2•-) to 
dioxygen and H2O2 (Hassan, 1989). SOD enzymes 
contain metal ion cofactors that, depending on the 
isozyme, can be copper, zinc, manganese or iron. 
SODs have been categorized into three main types 
found: copper zinc superoxide dismutase (CuZnSOD), 
manganese superoxide dismutase (MnSOD) and iron 
superoxide dismutase (FeSOD). The CuZnSOD is 
found in cytosol, plastid, chloroplast and peroxisome. 
In plant, chloroplasts CuZnSOD is known to be the 
major form. However some plants also contain 
FeSOD in the chloroplasts (Kurepa et al., 1997). 
MnSOD is found in the mitochondria however its 
activity has also been reported in the chloroplast 
(Allen et al., 2007).  
Catalase  

Catalase (CAT) is a tetrameric heme containing 
enzyme that catalyze the dismutation of two H2O2 
molecules to water and molecular oxygen (Hunt et al., 
1998). CAT is found in all aerobic organisms and 
known to be localized in peroxisomes, glyoxisome, 
cytosol and in mitochondria. Catalase has low affinity 
for its substrate and it is found in the millimolar 
concentration range (Foyer and Noctor, 2000). This 
enzyme does not consume cellular reducing 
equivalents therefore known to be unique among H2O2 
scavenging enzymes (Mallick and Mohn, 2000).  
Ascorbate peroxidase  

Ascorbate peroxidase (APX) are the main 
enzymes in the chloroplast that scavenges H2O2, 
because catalase is absent in chloroplasts. A 
micromolar range of APX is found in the 
mitochondria, chloroplasts, cytosol, peroxisomes and 
apoplast. APX shows high affinity to its substrate and 
utilize ascorbate as an e- donor (Asada, 1992). APX 
neutralize ROS by reducing H2O2 into H2O and 

monodehydroascorbate (MDA) (Noctor and Foyer, 
1998). In chloroplast two types of APX, 
stroma-localized forms (sAPX) and thylakoid-bound 
(tAPX), are found. Along with PSI-associated SOD, 
tAPX acts as the first defense against ROS (Asada, 
2006). 
Non-enzymatic antioxidants 

Non-enzymatic antioxidants also play a vital role 
to counteract the damage caused ROS. These 
non-enzymatic antioxidants scavenge the ROS to 
protect the algal cell. These include glutathione 
reductase, carotenoids and ascorbic acid. 
Glutathione reductase  

Glutathione reductase (GR) is a potential 
antioxidant, predominantly located in chloroplast 
however trace amount has also been located in 
mitochondria, cytosol and other plastids. The enzyme 
glutathione reductase catalyzes the reduction of 
glutathione disulfide (GSSG) back to glutathione 
(GSH) by utilizing electron from NADPH (Noctor and 
Foyer, 1998; Filomeni et al., 2002). GR play an 
important role against oxidative stress in almost all 
organisms (Pinto et al., 2003). Under oxidative stress, 
glutathionylation helps in preventing proteolysis, 
regulating gene transcription and cellular redox state, 
and changing protein turnover (Foyer and Noctor, 
2000; Rouhier et al., 2008). 
Carotenoids 

Carotenoids are derivatives of geranylgeranyl 
diphosphate found in chloroplast. Carotenes 
(α-carotene, β-carotene) and xanthophylls (zeaxanthin, 
violaxanthin, neoxanthin) are the two types of 
carotenoids. Carotenes consist of linear or cyclic 
(β-ionone or ε-ionone rings) hydrocarbons whereas 
xanthophylls are derived from carotenes 
(Siefermann-Harms, 1987). Carotenoids, known to 
play vital role in photosynthesis and photoprotection, 
are synthesized by plants, algae, some bacteria and 
fungi. In algae and plants, most of the carotenoids are 
found in the chlorophyll binding proteins embedded in 
the thylakoid membrane (Baroli and Niyogi, 2000). 
They function in stabilizing the membrane, harvesting 
light energy, inhibiting lipid peroxidation, and 
quenching a triplet sensitizer (chl3) and singlet oxygen 
(Baroli and Niyogi, 2000).  
Ascorbate (Ascorbic acid) 

Ascorbic acid or vitamin C is an important, 
hydrophillic antioxidant mainly located in chloroplast 
but its small amount is also present in mitochondria, 
cytosol and in nucleus (Asada, 1999; Foyer and 
Nocter, 2005). It is normally produced outside the 
chloroplast but stored in chloroplast. Ascorbic acid has 
ability to scavenge H2O2 and free radicals (hydroxyl 
radicals, singlet oxygen) (Smirnoff and Wheeler, 
2000). Ascorbic acid generally works as substrate for 
APX and finally converted into dehydroascorbic acid. 
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In this process, APX utilize two molecules of Ascorbic 
acid as e- donor and catalyze the reduction of H2O2 

into H2O (Noctor and Foyer, 1998). 
 

Conclusion 
This review has provided a insight into the 

processes taking place when algal cells confront with 
arsenic stress. It also explained the role of antioxidant 
defense system in algae against arsenic. Algae have 
been used as biomarker tool against metal stress in 
several studies. Interaction of arsenic with algae leads 
to oxidative damage to algal cells. Antioxidant 
enzymes such as SOD and APX remove the 
superoxides and peroxides, so that they remain 
unavailable for reaction with As. Non enzymatic 
antioxidants help in scavenging the remaining reactive 
species that escaped enzymatic degradation. Since 
fewer studies were conducted to understand the effect 
of arsenic on algae therefore further studies will help 
to deeply understand the mechanisms of tolerance. 
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