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Abstract: Wavelet analysis has been used for copula density estimation. This paper highlights the usefulness of the 
compact support and orthogonal wavelet in order to approximate copula density functions. Our method involves 
high approximation order properties rather than other previous methods such as kernel and orthonormal series 
method. Finally, we apply our proposed method to approximate the copula density between Norwegian stock index 
and MSCI world stock index. 
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1. Introduction 

In a special case, a copula is simply a joint 
distribution on the unit square to build bivariate 
distribution and to investigate dependency structure. 
We can uniquely determine a joint distribution for 2 
random variables by specifying the univariate 
distribution for each variable and, in addition, 
specifying the copula. Following Sklar’s theorem 
(Sklar, 1959) the joint distribution function H can be 
written as 

 
H(x,y)=C(F(x),G(y)), (1) 
 
where C is a copula distribution function, and 

F,G are the univariate, or marginal distribution 
functions. Given that F,G and C are differentiable, the 
joint density h(x,y) can be easily concluded from (1) 
as follows 

 
h(x,y)=c(F(x),G(y)).f(x).g(y), 
 
where f(x) and g(y) are the density corresponding 

to F(x) and G(y), respectively, and c=C/FG is 
called the copula density. In practice c is unknown and 
should be determined. More information on copula 
can be found in Joe (1997) and Nelson (2006). There 
are mainly two ways to estimate the copulas. The first 
one is parametric method that relies on the assumption 
of parametric marginal distributions. A drawback of 
this method is its need for intensive computations and 
sometimes optimization problems hard to solve (Gui, 
2009). If we don’t want to assume a parametric form 
for the copula, nonparametric estimation methods 
must be used. Deheuvels (1979) introduced empirical 
copula as one of first nonparametric copulas. Scaillet 
and Fermanian (2003) proposed a kernel technique. 

Gui (2009) proposed a nonparametric method to 
copula density functions based on two dimensional 
orthonormal series expansion. 

Wavelet method enhances the use of orthonormal 
series for copula density estimation. Genest et al. 
(2009) proposed copula density estimation through 
wavelets method. In this paper, we estimate copula 
density through wavelet using compact support and 
orthogonal property in wavelets. 

The rest of the present paper is organized as 
follows: In the second section, we follow the 
presentation of copula density estimation by wavelet. 
In Section 3, we apply wavelet to copula density 
estimation between Norwegian stock index and MSCI 
world stock index and compared to the other previous 
methods. Finally in the last section, some conclusions 
are stated. 
 
2. Development of dynamic composting of 
processes simulation model 

Wavelets dates back to the 1980s, and have 
found many applications in signal and image 
processing, numerical analysis, operator theory, 
geophysics, and other field of science as well as 
statistics. More details on wavelet can be found in 
Chui (1992) and Daubechies (1992). Wavelet analysis 
of a two-place function h(x,y) is a procedure by which 
this mapping can be decomposed simultaneously at an 
infinite number of resolution levels j=0,1,…. The 
decomposition at arbitrary level j0N is given by 

 
h(x,y)=hj0

(x,y)+Dj0
h(x,y)  (2) 

where 
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hj0
(x,y)� 

k1,k2=0

2j0 1
 aj0,k1,k2

j0,k1,k2
(x,y),  

 
is an approximation and 

 
 
is a sum of details of three types: vertical (1), 

horizontal (2), and oblique (3). Also, the unique 

coefficients aj0,k1,k2
 and b

()
j,k1,k2

 for 

j=j0,,J 1 , k1,k2=0,,2j(j0) 1 , and 

=1,2,3 should be determined such that compact 
support property leads to sum over k1 and k2 be 

finite. Note that the functions j0,k1,k2
, 

(1)
j,k1,k2

, 


(2)
j,k1,k2

, and 
(3)
j,k1,k2

 will be defined as follows: 

 

 

 
 
in terms of a specific scaling function , an 

associated wavelet , and their  location-scale 
transforms given by  for all tR, and k3Z. The 

functions  and  must satisfy a number of technical  
conditions which ensure that the location-scale 
families they generate form an orthonormal system of 
L2, the collection of square-integrable functions. Each 

choice of pair ( , ) leads to a different 
approximation of the copula density. Classical 
examples include the Adelson, coiflet, Daubechies, 
Haar, Meyer and symlet families of compact support 
of wavelets. 

Now our objective is to approximate a copula 
density function c(u,v) using wavelet basis given only 
an i.i.d. sample of two dimensional data 

(X,Y)=(Xi,Yi)
n
i=1 . We rewrite (2) as 

 

 

 (3) 
where 

a j0,k1,k2
= 

1
n
 
i=0

n
 j0,k1,k2

(Fn(Xi),Gn(Yi)),  

b 
()
j,k1,k2

= 
1
n
 

i=0

n
 

()
j,k1,k2

(Fn(Xi),Gn(Yi)).  

 
Note that cJ   may sometimes be negative on 

parts of its domain and fail to integrate to 1. If in 
applications, an intrinsic copula density estimate is 
deemed necessary, it can be derived from cJ   by 

truncation and normalization (Genest et al., 2009). In 
the general case, we must decide up on which 
resolution level to take to use in an application. Genest 
et al. (2009) stated that the resolution level J such that 

2J   n 2 J+1 is the optimal resolution level. 
 

3  Application 
Now, we use wavelet for copula density 

estimation and to construct bivariate distribution. We 
consider the Norwegian stock index (T), the MSCI 
world stock index (M) that records from January 1, 
1999 to July 8, 2003. Now, we are going to estimate 
copula density between interested variables using 

wavelet method for the optimal degree of 
approximation. Using presented method in Genest et 
al. (2009) resolution level 5 has been chosen to 
achieve acceptable approximation level. The AIC 
criteria for copula density approximation between T 
and M using different wavelet reported in Table 1. The 
finding results show better fit for wavelet rather than 
Kernel and Fourier method. The AIC for Kernel and 
Fourier are -88.64 and -90.21, respectively. The 
estimated copula density for these variables using 
Daubechies (2) wavelet is plotted in Figure 1. 

 
 
Table 1: Comparison between estimated c

TM
 using 

different wavelets. 
Type of wavelet AIC 
Adelson wavelet -99.66 

Coiflet (2) wavelet -100.44 
Daubechies (2) wavelet -110.22 

Haar wavelet -91.32 
Meyer wavelet -103.3 

Symlet (2) wavelet -107.82 
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Figure 1: Copula density estimation using Daubechies 
(2) wavelet. 
 
4. Conclusions 

The main goal of this paper was to present the 
use and usefulness of wavelet for estimating copula 
density in comparison with previous method in the 
literature, Kernel and Fourier. Compact support and 
orthogonal property in wavelet analysis was so helpful 
for our approximation. Our proposed method was used 
to analyze the dependency structure between 
Norwegian stock index and MSCI world stock index. 
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