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Abstract: Complex systems are usually represented by structurally invariant models acquiring their characteristic 
properties in simulations. This approach ssumes and infers idealized simplifications to models these systems. We 
consider this standard approach as omitting crucial features of phenomenological interaction mechanisms related to 
processes of emergence of such complex systems. We consider, as the main feature, the quasiness of the structural 
dynamics that generate complex systems. Generation achieved through prevalently coherent sequences and combinations 
of interactions. Quasiness (dynamics of loss and recovery, inhomogeneity, multiplicity, non-regularity, and partiality) 
represents the incompleteness of the interaction mechanisms. Complex systems possess local coherences corresponding 
to the phenomenological complexity. Complex systems are considered quasi-systems, not always systems, not always the 
same system, and not only systems. We address problems of representing the quasiness of coherence (quasicoherence), 
such as the ability to recover and tolerate temporary levels of incoherence. The main results of the study focus on 
modelling quasicoherence through the changing of rules in models of emergence. This is in contrast to models of fixed 
structural rules allowing only parametrical variations. We present a version of standard analytical approach compatible 
with quasiness of systemic emergence and related mathematical issues. The same approach is considered for networks, 
artificial neural networks, and we introduce the concept of quasification for fixed models. Finally, we assert that suitable 
representations of structural dynamics and its quasiness are needed to model, simulate, and adopt effective interventions 
on emergence of complex systems. In direct contrast to standard methods that only consider their properties. 
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1 Introduction 

The purpose of this article is to consider approaches 

that model complex systems. This includes collective 

systems, intended as generated, emergent through 
designed, detected, or inferred multiple interaction 

mechanisms (combinations of interactions). 

The approach detailed here considers quasiness, 
defined as generic specification, attribute the 

acquisition of emergent properties and processes (as 
interaction mechanisms). Thisincludes 

inhomogeneity, multiplicity, non-regularity, partial 

synchronizations and partially different 
combinations. Quasiness is considered a feature of 

interaction mechanisms (idealized or inferred) and 

structural dynamics (the processes of change over 
time). Is the predominant aspect of quasiness, 

indeterminacy and incompleteness (given, for 

instance, by incomplete occurring of a process 
terminated early; incomplete initial conditions; 
incomplete iterations; partial consideration of the 

values of variables and their combinations) 

characterizing real phenomenological interactions of 

emergence? Determination and completeness are 
ideal simplifications for modelling essential aspects 

of phenomena. Idealized modelling, considered 

reliable since it captures crucial properties, fails to 
consider quasiness. 

In this study, we consider such quasiness as 
predominant property in modelling phenomena and 

mechanisms of emergence of complex systems when 

the purpose is to act on them, e.g., induce, orient, 
vary, deactivate, and merge them. 
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At this regard we mention how previous research 

Investigates the theoretical incompleteness of 
emergence phenomena [1]. 

Quasiness of complex systems emergent from 

multiple interaction mechanisms is characterized by 
quasi-coherence (quasiness of coherence, intended, 
in short, as long-range correlation and scale freeness, 

see Section 4.1). Understood as dynamic sequences 

or combinations of coherences of variable ranges, 
their loss and recovery, inhomogeneity and 

irregularity. The dynamics of local, possibly globally 

temporal, coherences in processes of emergence [2] 
is related to the countless instantaneously equivalent 
configurations of elements. For example, flock of 

birds, equivalent with regard to the different 

combinations of interacting entities. More precisely, 
quasi-coherence is a property of the nonlinear 

changing of rules constituting multiple interaction 

mechanisms generating emergence. This is in 
contrast to fixed or equivalent structural rules that 

allow stable configurations with only parametric 

change. 
Multiple changing rules of  the interaction 

mechanisms represent phenomenological structural 
dynamics that are only partially considered in fixed 
parametric models. Simulations focus on properties 

rather than on their processes of acquisition and of 
emergence. 

We introduce examples of mathematical approaches 

useful for ideal modelling of quasiness of complex 

structures and multiply emergent systems. In Section 
2, we briefly define some introductory concepts 

useful for the following topics: interaction 

mechanism, structural dynamics, self-organization, 
emergence, grey systems, fuzzy systems, multiple 

systems, quasiness, complex systems and theoretical 

incompleteness. In Section 3, we present a concise 
overview of approaches to modelling complex 
systems. 

In Section 4, we deal with analytical and network 

Modelling of quasiness and introduce the 
quasification of fixed models. In particular, in 

Section 4.1, we consider consolidated approaches to 
modelling, representing coherence, dealing with 
Synchronized Multiple Synchronizations, Local 

Couplings, Covariance, Correlation and Cross- 
correlation. In Section 4.2, we present mathematical 

proposals for analytic and network modelling of 

quasiness. In subsection 4.2.1, we consider classic 
models based on fixed rules. In subsection 4.2.2, we 
introduce approaches to modelling based on variable 

rules. This proposal is an analytical approach to 
modelling the quasiness of the structural dynamics of 
Phenomenological interaction mechanisms 

supporting emergence. In subsection 4.2.3, we 

consider how this approach may be also implemented 

with networks having changing linkage. In 
subsection 4.2.4, we consider the possibility to 

quasify models based on fixed rules. What is 

introduced in the three previous subsections is a 
theoretical background for modelling the quasiness 
of complexity. In subsection 4.2.5, we present a 

general view on the novelties introduced. 

In Section 5, we present a final summary. Finally, in 
Section 6, we introduce issues for further research. 

Briefly, the original contributions of the article are as 

follows: 
•  When simulating a complex system, it is 

insufficient to generate an artificial system that 

possesses certain properties characteristic of that 

system. It is necessary to properly simulate 
interaction mechanisms, allowing suitable 

reactions to structural interventions.  For 

example, models of complex systems showing 
correlation, scale-freeness, and power laws may 

adequately recreate features insufficient to 

model the interaction mechanisms supporting 
emergence and reactions to external 

interventions. In particular, we recall that 
correlations do not imply causality [3]. It is also 
a matter of recognition of the inadequacy of 

pursuing unique, optimum, complete models of 
complex systems constructed of time-dependent 

variables instead of modelling with time- 

dependent rules. This is related to the general 

quasiness of complex systems. That is, their 
being not always systems and not always the 

same systems. The model's properties change 

over time, even through multiple coherences are 
present when scale-freeness endures. 

•  Modelling complex systems is focused on the 

theoretical incompleteness of quasiness of their 
detected, inferred, ideally modelled, or 
represented phenomenological interaction 

mechanisms generative of the emergent 

characterizing properties. Not on their 
characteristic properties alone. Such models are 

here, however even if at different levels and 
modalities, constituted of time-dependent rule 
sets, for example, systems of differential 

equations or network linkages. These represent 
quasiness of structural dynamics of complex 

systems. Modelling in this manner is assumed to 

be suitable to simulate not just complex systems 
behaviours and their acquisitions of properties 
(rather than acquired properties) but also the 

proper reactions to external interventions in their 
entirety and not only in reference to specific 
properties. 
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• The variability of rules charactering models of 

quasiness of complexity. In Section 4.2, we 
introduce examples of related mathematical 
approaches, both analytical and based on the 
science of networks. We also introduce the 

concept of quasification for fixed models. 

This is the fundamental conceptual innovation 
proposed in this article. 

We conclude by stressing that understanding 

how complexity can be generated  and 

represented by structural dynamics in the context 

of the quasiness, rather than assuming invariable 

representations very far from the dynamics and 

multiplicity of reality, enables the design of more 

suitable and realistic models of the system. 
 

2 Introductory concepts 

To aid the reader, in this section, we briefly 
summarize some conceptual aspects in this research 

area. Namely, characteristics of complex systems and 
related concepts. In the literature, these concepts are 
widely elaborated. Here, we review the concepts of 

interaction mechanism, structural dynamics, self- 
organization, emergence, grey systems, fuzzy 

systems, multiple systems, quasiness, complex 

systems and theoretical incompleteness. Citations are 
abridged from the available literature to those useful 
later in the article. 
 

2.1 Interaction mechanism 

The elementary understanding of ‘interaction’ 

occurring between pairs, is that “one’s behaviour 
depends on another’s behaviour”. On the concept of 

interaction, Von Bertalanffy wrote [4, p. 19]: 

“Application of the analytical procedure depends on 
two conditions. The first is that interactions between 

‘parts’ be nonexistent or weak enough to be neglected 

for certain research purposes. Only under this 
condition, can the parts be ‘worked out’, actually, 
logically, and mathematically, and then be ‘put 

together.’ The second condition is that the relations 
describing the behavior of parts be linear; only then 

is the condition of summativity given, i.e., an 

equation describing the behavior of the tota1 is of the 
same form as the equations describing the behavior 

of the parts; partial processes can be superimposed to 

obtain the total process, etc. These conditions are not 
fulfilled in the entities called systems, i.e., consisting 

of parts ‘in interaction.’ The prototype of their 

description is a set of simultaneous differential 
equations, which are nonlinear in the general case. A 
system or ‘organized complexity’ may be 

circumscribed by the existence of ‘strong 

interactions’ or interactions which are 

‘nontrivial’non-trivial’, i.e., nonlinear.” (See the 

system of simultaneous differential equations (1) 
reported in section 3.2). 
An interaction mechanism is given by multiple 

combinations of interactions. An example of generic 

interaction mechanism is given by the irregular 
combinations of single interactions in Brownian-like 

motions and gasses. Interaction mechanisms of 
interest here are those that support acquisitions of 

coherences and processes of emergence. Dealing 
with simulated flocks of boids, beside elementary 

assumptions and constraints (such as imposing 
collision avoidance, cohesion rules, alignment rules 

as in Reynold’s modelling, see subsection 4.2.4), we 
consider anisotropic flocking where a case of 

interaction mechanism is given by the occurrence of 
interaction rules applied by sequences of boids 

chosen in any way, such as the elementary: 
if the speed of the closer boid is greater, less or equal 

to k, then correspondingly keep, increase or reduce 
of a suitable parameter w the speed. 
We may have countless variations of such rules. For 

instance, by context-sensitive computing k, the rule 

may apply only to specific boids having speed greater 

or less than h; considering the average speed of the n- 
closer boids; replacing metrical closeness, for 

instance, with topological closeness; replacing speed 
with altitude or replacing speed with direction, and 
their possible combinations, to be applied generally 

or depending on parametric values, etc. 

Interaction mechanisms may be considered in a 
phenomenological context of applied organizations 

constituting structured configurations and rules. We 
may have hierarchical, horizontal, functional, matrix 

and reticular organizations. There are plenty of 

examples such as the military complex, corporate 

entities and commercial institutions where rules may 
apply in different context-sensitive ways. That is, for 

example, commercial rules may be applied in 
different ways depending on the products produced 
and how they are marketed. Other examples include 

organized games such as artificial intelligence games 

considered by the game theory [5-7]. In these games, 
formalization is possible and permits simulation of 

properties. 
Another approach to understanding interaction 

mechanisms is allowing for self-organizing 
processes. These constitute partial regular sequences 

of varied, contextually applied configurations of 

interaction rules. For instance, partially repeated and 

synchronized processes. Some examples include self- 
constitution of patterns in Cellular Automata and 
the establishment of whirlpools in liquids and air 
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(hurricanes). Again, formalization is possible and 
allows behavioural simulations. 
Yet another approach to interaction mechanisms 
considers the emergent processes as constituted by 
coherent sequences of partial, combined, varied, lost, 
and recovered configurations of interaction rules. 
The multiple interaction mechanisms of emergence 
of collective systems refer to the occurrence of 
interactions. For example: 
- Variable over time, 
- Multiple interactions between the same and 

different elements, 
- Between multiple elements (clusters), 
- In combinations, 
- At different intensities, 
- With different, and time-varying, start and 

duration times, 
however sufficient to keep significant subsequent 
levels of coherence. The interaction mechanisms of 
emergence can have properties such as their regular 
or partial recurrence; also including their evolution 
and mutation, combination and ability to generate 
levels of coherence and multiple local coherences. 
Such properties may characterize specific processes 
of emergence, as is the case with flock-, swarm-like 
behaviours and biological life. 
Formalization is more difficult and only possible for 
specific properties, for example, for artificial life. 
The multiplicity of interaction mechanisms of 
emergence may be modelled by considering 
dominant aspects such as correlations and self- 
similarity. Here we consider the dominant aspect of 
quasiness in structural dynamics and in the 
occurrence of multiple interaction mechanisms. 
Quasiness in models, as in quasiness of 
correlations and self-similarity, are expected to make 
these mechanisms less ideal but more effective 
and realistic. 
Furthermore, quasiness is expected to increases the 
understanding of collective phenomena in addition to 
facilitating structural modifying interventions on 
collective phenomena. 
The three cases considered above are not precisely 
separated and may occur in variable combinations. 
 

2.2 Structural dynamics 

The introductory concept of structural dynamics is 
considered in different ways, including sequential 
structural changes of cytoskeletons [8, p. 89]. 
Different modes of interaction assumed by individual 
agents in collective behaviours, complex systems 
intended as cascades and sequences of phase- 
transition-like changes [9, 10]. In general, structural 
dynamics is considered a constituent of acquisitions, 
changes, losses, and combinations of structures and 

interaction mechanisms. These occur, for instance, 
through phase transitions and networks properties [8, 
p. 87–102]. 
 

2.3 Self-organization 
Self-organization is assumed to occur when a 
population of interacting entities acquires collective 
sequences of properties in a phase-transition-like 
manner. Having regularities and stabilities, such as 
dominant repetitiveness, and synchronicity. The 
occurrence of interaction mechanisms has some 
regularities such as partial, but predominant, 
iterations in a context of quasiness. Examples include 
the behavioural patterns of mosquitoes swarming 
around a fixed light and whirlpools [8, p. 33-37; 11- 
14]. 
 

2.4 Emergence 
A population of collectively interacting entities is 
assumed to establish processes of emergence when 
acquiring sequences of properties in coherent ways, 
they generate long-range correlations. The process of 
emergence may be understood as the   occurrence 
of possibly multiple simultaneous sequences of 
processes of self-organization   when the 
corresponding acquired dynamic structures are 
coherent (a case is given by the theory of ‘dual 
evolution’ for adaptive systems, introduced by 
Paperin et al. [15], see also [8]. Emergence may be 
understood as a generalization of self-organization in 
which partial regularities, synchronization, and 
stabilities are substituted by coherences. The multiple 
sequences of interaction mechanisms of emergence 
generating and supporting complex systems have 
quasiness as main feature. That is, their non-regular 
recurrence, inhomogeneous applications, partially 
occurring, evolution and mutation. Furthermore, this 
includes combinations and the ability to generate 
levels of coherence, and multiple local coherences. 
Examples include collective emergent systems such 
as anthills, cities, flocks, the internet, markets, 
networks, social systems and swarms. Emergent 
systems keep their coherences and are robust to 
perturbations [2, 8, 16-20]. 
 

2.5 Grey systems 

Grey systems are characterized by incompleteness 
and uncertainty in measurements, information about 
composing elements, structures, boundaries, 
interaction mechanisms, and the system’s behaviours 
[21, 22]. Their incompleteness is not theoretical, as it 
can be completed (see point 2.10). 
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2.6 Fuzzy systems 
Fuzzy variables are those whose value is specified as 
an allowable range rather than a single value. For 
example, 0 < x < 1 instead of x = 0 or x = 1 [23-26]. 
Fuzziness deals with properties of values under the 
assumptions of stability and invariability of the 
structural representations of the phenomena. Not 
about the variability of structures and their properties, 
as in the case of multiple interaction mechanisms. It 
may be a matter of changing the fuzziness level of 
interacting agents. Fuzzy systems use fuzzy values 
and dealing with incomplete information. Examples 
include incomplete or partially incorrect words for 
search engines, and uncertain measurements. 
 

2.7 Multiple systems 
A multiple system is considered to be a set of systems 
whose components simultaneously belong to more 
than one system [8, p. 104]. For example, when 
multiple networks are constituted by the same nodes 
belonging to different and simultaneous networks 
[27]. When multiple states of belonging occur, some 
multiple systems can be fuzzy. 
 

2.8 asiness 

The following instances are examples of the concept 
of quasi in the scientific literature. Quasicrystals take 
a particular solid form where atoms are arranged in a 
structure that is deterministic. They are not periodic 
or repetitive as can be observed in normal crystals. 
There are patterns where the local arrangement of the 
material is regular and stable but not periodic 
throughout the material. The characterizing property 
is incompletely respected in multiple possible ways 
[28]. In thermodynamics, quasistatic processes occur 
slowly enough to allow the system to remain in 
internal thermodynamic equilibrium. That is, the 
volume changes so slowly that the pressure remains 
uniform. In physics, quasiparticles possess traditional 
particle properties with the exception of localization 
[29]. In mathematics, quasiperiodicity relates to 
recurrences whose periodicity has components that 
are irregular or unpredictable. 
Quasiness attributes specifically to the generic 
dynamics of the occurrence of incompleteness in 
phenomena of emergence. This is particularly the 
case in collective phenomena where countless 
equivalences occur. For example, in the behavioural 
multiplicity of global and local patterns of spatial 
positions assumed by single interacting agents (such 
as boids in flocks), densities, distributions, acquired 
patterns. It is the assumption of local dynamic 
configurations that makes dispositions that had lost 
their coherence become temporary coherent again [8, 
2]. As we will see at the end of this subsection, this is 

the case for components of a collective behaviour 
acquiring ergodicity as an involuntary consequence 
of their movement [30]. Components of populations 
are intended to assume ergodic behaviours if their 
behaviour is such that when, at any moment in time, 
x% of the population is in a particular state, then each 
component of the population spends x% of time in 
such state. Ergodicity is a recurrent property of 
statistical systems. However, this is a formal and 
absolute definition of ergodicity. In real cases, we 
consider percentages that establish significant levels 
of ergodicity when components assume percentages 
of same roles at different times, and simultaneous 
different roles, but with the same percentages 
establishing quasi-ergodicity. 
In the multiple dynamics of emergent phenomena, as 
in collective behaviours, large varieties of 
instantaneous configurations of elements (e.g., boids 
in flocks) are equivalent. For a flock, there are 
countless equivalent configurations of the same 
flock. Basically, the quasiness specifies the 
separation from simplified, ideal representations used 
for fixed models, from the phenomenological 
processes. Such differences are usually neglected by 
idealized models as irrelevant. Here it is considered 
as predominant in modelling phenomena and 
mechanisms of emergence of complex systems. The 
quasiness is related in several ways and levels by 
which collective phenomena, may globally, partially 
and locally assume, lose, recover and reassume levels 
of coherences. The ability to recover and tolerate 
temporary levels of incoherence occurring in 
predominant or non-predominant properties of 
collective systems, where the occurring of tolerance 
may be measured in terms of percentages, their 
variations, periodicity, and other regularities. This is 
different from considering tolerance thresholds. This 
is a matter of robustness and resilience of collective 
behaviours. 
In processes of emergence, quasiness represents the 
possibility of the structural dynamics of their 
interaction mechanisms to recover, acquire and 
temporarily gain inhomogeneous local coherences [8, 
p. 153–154]. The attribution of quasiness may be 
conceptually generalized to various properties in 
correspondence with their non-complete, non- 
regular, specific and inhomogeneous occurrences. 
This includes indefinite combinations of 
phenomenological events and processes. Ideal 
models focus on the essential characterizing 
properties of a phenomenon, such as the scale 
freeness of a collective behaviour. In contrast, we 
focus on how these properties are achieved and 
maintained. We are not interested in averages only 
but on properties of the distributions leading to such 
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average. In addition to the convergence point, we also 
consider the convergence process. For instance, we 
may consider a variable x with the constraint 0<x<1. 
How constraints are respected is as important as the 
constraint itself. That is, sequences of values of the 
variable x close to the end points, or having regular 
fluctuations between them, or fluctuations around the 
mean. In the following, we consider the cases of 
quasi-systems and quasicoherence and other 
concepts introduced later. 
Quasisystems (for which there is quasiness in being 
systems) are intended as sequences (be they coherent, 
temporarily incoherent, resuming the same or 
different coherence) of different (possibly fuzzy), 
inhomogeneous versions of the same system [8]. 
Quasisystems can involve any level of fuzzy 
belonging, and be locally, or temporarily, not systems 
nor the same systems. Furthermore, quasiness can 
occur when the same system may operate in both 
fuzzy and non-fuzzy ways. Fuzziness in a 
quasisystem can take the form of indeterminate 
numerical parameters describing its state in the class 
of systems. In contrast, the quasiness of systems is 
structurally specified by not always being systems, 
not always the same system, and not only systems, by 
their incomplete processes of resumption and 
recovering of properties. As is the case for coherence, 
multiple structural dynamics and multiple interaction 
mechanisms in collective systems. Fuzziness, on the 
other hand, deals with indeterminacy in numerical 
indices of state. Quasiness is concerned with the 
specification of processes (here interaction 
mechanisms supporting emergence). A system is not 
‘quasi’ when its multiplicity is reduced to one or very 
few systems. However, in some special cases a 
quasisystem may be approximated by a single or few 
systems. Quasisystems are very realistic and require 
suitable approaches, considering and not neglecting 
their quasiness as it is used in simplified modelling. 
In the subsection 4.2.2 we present possible 
approaches. 
Quasicoherence (having quasiness in coherence) is 
characterized by dynamic coherences of local or 
variable range, coherence loss and recovery 
processes, combinations of coherences, and 
coherences as with long-range correlations. The latter 
can be represented by a graphical example of a 
stylized flock as quasicoherent quasisystem having 
quasiness of multiple complex behaviours, (see Fig. 
1). Modelling phenomena of quasicoherence may 
include those of remote synchronization based on 
indirect information transfer. This occurs when non- 
adjacent pairs of entities become substantially 
synchronized despite there being no direct structural 
connections between them [31-33]. We may consider 

the case when the coherence of an emergent 
collective behaviour is given (locally, partially, 
temporarily) by the occurrence of ergodicity (see, for 
instance, [8, p. 161-170; 34, 35]. The same system, 
or parts thereof, can be both ergodic and non-ergodic 
depending upon the time scale of the observer. For 
example, polymers or even temporarily ergodic 
systems. As in the concept of quasi-ergodicity as 
related to degrees or indices of ergodicity [8, p. 118, 
162] recognized as another example of 
quasicoherence. 
 

2.9  Complex systems 
Complex systems are systems generated by, and in 
which, multiple processes of emergence occur. 
Complex systems are therefore quasisystems having 
predominant, multiple coherences. In contrast to non- 
complex systems, they do not acquire the same 
systemic property over time. They implement 
continuous processes that establish coherent 
structural changes in acquiring properties and 
behaviours. Multiple irregularities of quasiness can 
be recognized as belonging to multiple processes of 
temporary loss, recovery, or partial coherences. That 
is, acquisition of properties that adapt and restore 
forms of coherence to values that had become 
incoherent. Examples of acquired properties are 
belonging to the basin of an attractor, correlation 
(long range), network properties, polarization and 
global ordering, power laws, remote 
synchronizations, scale invariance, and self- 
similarity. Examples of complex systems include 
climate systems, dissipative structures, double 
pendulums, flocks, swarms and social systems. They 
have multiple properties that vary in value such as 
long-range correlations and scale invariance [36-39]. 
 

2.10 Theoretical incompleteness 

Incompleteness occurs as a phenomenologically and 
consequently theoretically necessary condition of the 
models, even if it is not sufficient for the assumption 
of coherences and multiple emergences, in the 
emergence of complex systems. 
Emergence complex systems are intended as 
theoretically incomplete since a single model is not 
sufficient for their representation; the system 
variables (degrees of freedom) are variable in number 
and continuously acquired; non-equivalent properties 
are continuously acquired. The emergence of 
complex systems requires such theoretical 
incompleteness. 
The generic concept of theoretical incompleteness [1, 
40-42] can suitably specify the one of quasiness. 
Theoretical incompleteness is a property of 
phenomena that is incomplete enough to permit 
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emergence of complex systems. Their multiple 
structural dynamics and dynamical coherences are in 
the context of equivalences. Completeness is an 
‘enemy’ of emergence as it produces single 
emergence without leaving a role to equivalences 
[43]. 
Theoretical incompleteness, as theoretical 
noncompletability, can be ascribed, for instance, to: 
• The Uncertainty Principle in quantum 

mechanics, by which accuracy in measuring one 
variable is at the expense of another, 

• Complementarity in theoretical physics, for 
example, between wave and particle natures, 

• Partial acquisitions, loses, and recovery of 
properties in processes of emergence in 
dynamics of equivalences, 

• The incompleteness theorems introduced by 
Gödel in 1962, 

• Partial or non-decidability, 
• Non-computable uncertainty when considering 

that probabilities must relate to variable 
configurations of events and not to improbable 
isolated abstract events [44, 45], 

• Non-complete, non-explicit, non-univocal and 
non-equivalent modelling. Such as the DYnamic 
uSAge of Models (DYSAM) based on the 
Bayesian method, statistical approaches of 
‘continuous exploration’ of events and ensemble 
learning as in [8, p. 201–204; 46, p. 64–75]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Graphical example of a stylized flock having 
quasiness of multiple complex behaviours. 
 
 

3 Modelling complex systems 

We now present a concise overview of approaches to 
model complex systems. We mention the following 
approaches: 

a) Considering ideal models that generate data and 
assume properties have significant similarities 
with the real phenomena [47-50]. This is 

especially true for simulations. For instance, 
properties of nondeterministic chaos are studied 
mainly through simulations. 

b) Considering real data related to spatial positions 
of entities interacting in 3D. For instance, when 
interacting entities are equipped with a global 
positioning system (GPS). As used in cars, when 
tracking animals in herds, economic values (for 
instance prices and share values). This includes 
their macroscopic properties such as density and 
acquired properties such as scale invariance. We 
consider ideal models that work with real data 
and are interpolated to model behaviours [51- 
54]. The models here are considered simply as 
‘models of the system’. 

c) We consider ideal models consisting of inferred 
constraints by the possible interaction 
mechanisms and derived rules of interaction 
[55-60]. The models are considered to represent 
the real generative interaction mechanisms of 
the system and be suitable for simulations. 

d) The high level of dispersion, (global) single low 
interpolation and the suitability of multiple 
interpolations of real data, indicate 
phenomenological intense structural dynamics. 
In addition to multiple processes of emergence. 
This requires the use of sequences of non- 
equivalent, different ideal (characterized by a 
top-down structure and based on general 
principles assumed to be universally valid) and 
non-ideal (for instance, data-driven -statistical-, 
properties of interpolations, based on artificial 
learning and combinations of general principles 
-optimization- and specific choices requiring 
computer simulations) models. This is the 
research issue dealt with in this article. The ideal 
and non-ideal models are considered as having 
significant correspondence with the real 
generative interaction mechanisms of the system 
and share their essential, possibly necessary but 
not always sufficient, features of quasiness. 

We mainly focus on multiple modelling and little on 
increasing   and optimizing the levels of 
approximation and behavioural simulation (cases a 
and b). The interaction mechanisms and their crucial 
feature of theoretical incompleteness are represented 
by quasiness. This allows for simulations of realistic 
reactions to structural changes, external influences 
and adoption of adequate approaches to act on the 
phenomenon (cases c and d). Currently, this is 
conducted by acting on parameters of fixed models 
(cases a and b). They are considered reductionist and 
inappropriate to represent the real phenomenon and 
its interaction mechanisms. 
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In this article, we focus on cases c) and d) as 
approaches to be considered when actions are to be 
implemented on complex systems. Such as 
economic, environmental, medical, and social 
systems and where appropriate modelling is 
necessary. 
 
 

4 Approaches to model coherence, 
structural dynamics and quasiness. 
Quasification 
In Section 4.1, we consider consolidated approaches 
to model and represent coherence in the cases of 
Synchronized Multiple Synchronizations, Local 
Couplings, Covariance, Correlation, and Cross- 
Correlation. On the other hand, Section 4.2, presents 
mathematical proposals for analytic and network 
modelling of quasiness. Such proposals are analytical 
approaches developed to model the multiplicity and 
quasiness of multiple interaction mechanisms, and 
their variable but predominant coherences in 
processes of emergence. 
 

4.1 System data value coherence 

Global, local, and multiple coherences are detectable. 
For instance, in scale-free correlations among 
quantitative and measured properties of system 
components. This is without considering or needing 
to know how the interaction mechanisms are 
modelled or their structural dynamics. 
The detection of coherences is very important. They 
are significant clues to the existence of consistent 
interaction mechanisms of emergence. Which, in 
turn, are important to hypothesize about and 
implement interventions on the phenomenon. 
Usually, the approach is to use a single model that is 
either assumed to correspond to a single fixed 
idealized interaction mechanism or sufficient to 
approximate. This averages the effects of more than 
one interaction mechanisms. We consider such an 
approximation as a matter of reductionism, since it 
neglects structural dynamics of the interaction 
mechanisms. Such reductionism may be acceptable 
in the simplest cases but not generalizable to highly 
complex systems. For these systems the level of 
complexity is given, for instance, by the number and 
dynamics of the processes of emergence occurring, 
the acquired properties, and the quasiness. 
Approaches to detect coherence are neither 
descriptive nor prescriptive of the interaction 
modalities of the components. In our view, the 

multiple composed and superimposed 
phenomenological interaction mechanisms. 
As considered in Section 3.3, the research challenge 
is to realize suitable approaches to model generative 
interaction mechanisms and their dominant 
properties such as quasiness. This should fit 
phenomenological data rather than trying artificially 
generate data usually achieved through simulations 
that approximate effects and properties of the 
phenomena (cases a and b, in Section 2). 
Let us now turn to well-represented cases of 
coherence [61]. In the conceptual framework of 
theoretical incompleteness, quasicoherence may be 
understood to be represented as the irregular 
occurrence of dominant coherences and in their 
combination. Related research approaches 
concentrate on detection of such quasicoherence and 
infer crucial characteristics of the corresponding 
possible interaction mechanisms. These approaches 
focus on the interaction mechanisms and their 
properties instead of confusing simulation of their 
effects. This confusion occurs between the 
generating mechanisms and their effects. For 
example, by considering the geometrician of 
cobwebs made by spiders intended as pursued on 
purpose having some geometrical-like abilities 
instead of behavioural effects. This is also the case 
for bees that build space-occupation-optimized 
hexagonal cells in their hives, or the birds that build 
certain kinds of nests. Even animals that establish 
particular kinds of colonies. The effort to artificially 
recreate the outcomes of this behaviour ignores the 
interaction mechanisms generating such behaviour. 
 
4.1.1 Synchronized multiple synchronizations 

The phenomenon by which various kinds of 

synchronizations are established, which in turn 
become synchronized, has been observed in the 
human nervous system and for populations of 
chaotic systems [11, 38, 62-64]. If the higher- 
level synchronization of multiple local 
instantaneous synchronizations is maintained, 
then it can be considered as a form of coherence 

[62]. An example of a model of these phenomena 
is given by considering ensembles of globally 
coupled chaotic maps (see, for instance [65, p. 
155]. The coherence of their dynamics is 
described by laws of the form 
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(��(�)) 

�=1 

occurrence of multiple quasicoherences is to be 
understood not in terms of liability or approximations 
that may possibly be refined, but as corresponding to 

 

where: 
(eq.1) 
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1 
 xn yn if  0 

• �is the number of chaotic maps, 
• � = 1,..., � is a space index, 
• ��(�) denotes the value of the ith map in 

correspondence to the discrete time � = 
0,1,..., 

• the function �(�) is given by �(�) = 

��(1 − �) (logistic map) where: 
• � denotes the non-linearity parameter of 

the logistic map and 

• � denotes the coupling parameter. 

� σY is the standard deviation of Y. 

Covariance is given by 
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where: 

 
 
 
 
 
 
 
 

(eq.4) 

 
4.1.2 Local couplings 
We may consider more complicated systems in 
which the couplings are local rather than global. This 
is the case for chains of coupled limit-cycle 
oscillators, see [66], described by equations having a 
generic form of the kind 
 
��̇ = �� + �(��) + �(���( ��+1 − ��) + ���( ��−1 − ��) 

(eq.2) 

where: 
 
• �� denotes the phase of the nth oscillator, 
• �� its natural frequency, 
• � a suitable parameter and 
• �(��) denotes a nonlinear function responsible 

for the non-uniformity of rotations of the 

� x and y are the means of the data series 
and 
� n is the size of the considered sample. 
 

4.1.4 Cross-Correlation function 

The Bravais–Pearson approach is generalized by 
other linear measures, including the cross-correlation 
function. Let us consider two time series of length N 
whose normalized values are denoted by xn and yn 
with zero mean and unitary variance. The cross- 
correlation function CXY (τ) depends on time lag τ and 
varies within the range from −(N−1) to N−1 
according to the following law: 
 

N � 

CXY ( )  N � n1 

considered oscillator. CXY (� ) if   0 
 
4.1.3 Bravais–Pearson coefficient 
It is generally possible to use measures of correlation 
by applying the linear approach of the so-called 
Bravais-Pearson coefficient [67], see [68] for a 
review. This quantity measures the linear correlation 
between two sets of data. Namely, the covariance of 
two variables being divided by the product of their 
standard deviations. Considering that covariance 
determines the extent to which two random variables, 
denoted by X and Y, covary. That is, the way they 
change in the same way [69]. The Bravais–Pearson 
coefficient is essentially its normalized measurement 
(with values between −1 and 1). This coefficient, as 
covariance itself, measures only linear correlations 
and neglects other types of relationships [70-72]. 
Given a pair of random variables (X, Y), in a 
population, Pearson’s correlation coefficient ρ is 
given by 

 
(eq.5) 

Cross-correlation values can run from 1 (maximal 
synchronization) to −1 (anti-phase signals). In 
conceptual agreement with the issues discussed 
above, we may consider quasicoherences as partially 
occurring in the cases mentioned above. They are 
varying locally and valid over time in all possible 
combinations. 
 

4.2 Analytical and network modelling of 

quasiness. Quasification. 

In this section, we consider two classic mathematical 

approaches considered suitable to model structural 

dynamics and quasiness. This includes systems of 
differential equations and networks. The problem is 
to consider idealized approaches to model multiple, 

  X , Y   
Cov( X ,Y ) 

 XY 

 
 

(eq.3) 

different, inhomogeneous, local or long-range, 
continuous or temporary changes of the interaction 
mechanisms occurring in emergent complex systems. 

 
where: 
 

� Cov is the covariance, 
� σX is the standard deviation of X and 

4.2.1 Fixed rules 
In classical approaches to complex systems, 

components are assumed to be in fixed numbers and 

to interact continuously in the same nonlinear way. 
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(1) 

The exception being parametric variation. Moreover, 

acquired systemic properties are assumed to be 
generated by fixed models. The classical approach 

utilizes techniques to interpolate, model by 

considering data properties, preform conceptual 
simulations and employ idealistic fitting models. 
This approach almost inevitably ignores the real 

processes and their properties. It is considered to be 

approximated by ideal assumptions and abstractions 
Validity of abstract long-range unexplained 

correlation, chaotic behaviours, power laws and 

polarization [43]. The real generative interaction 
mechanisms and their properties, such as quasiness, 
are rarely inferred and most often remain unknown 

and neglected. They are assumed to be suitably 

represented by fixed models and the properties of 
models from data [2]. 

Conversely, in this study, we consider (see 

subsection 4.2.2) representations and properties of 
changes in the compositions of the applied 

interaction mechanisms. Such representations and 

Properties are indispensable and predominant 
Characteristics of phenomenological interaction 

processes leading to constituent emergence. This 
approach is supposed to allow realistic simulations in 
the presence of environmental changes and external 

perturbations. This also enables more of a systemic 
structural understanding that is needed to design 

interventions on complex systems. 

An example of the first case (fixed rules) is given by 

the classic analytical definition of a system, denoted 
by S, as mentioned in paragraph 2.1. Consisting of n 

interacting elements pi for which there exist some 
measurements Qi (i = 1, 2, …, n). In the simplest case, 

such as the occurrence of a finite and stable number 
of elements, S may be ideally identified by 

instantaneous Qn values and by their time evolution. 
This is represented by a system of coupled, first- 
order, ordinary differential equations [4, p. 56], 
 
 

dQ1/dt = f1 (Q1, Q2, … Qn) 
dQ2/dt = f2 (Q1, Q2, … Qn) 
……………………………. 
dQn/dt = fn (Q1, Q2, … Qn) 
 
 

(eqs.6) 

 

The assumption is that model (1) identically and 

generally applies to modelling systems. The 
interaction mechanism is also considered coinciding 

with system (1). It is supposed to model the 

phenomenological structural dynamics in a 

simplified and reduced way and, therefore, its effects 

on properties of pi are directly related to Qn. 

Among the many possible examples, we mention the 
well-known Lotka–Volterra equations [73]. This 

models a system of interacting prey and predators 
 
 

dx/dt = ax − cxy 

dy/dt = −bx + cxy 
 

(eqs.7) 

where x is the density of prey individuals, y the 
density of predators, α is the intrinsic rate of prey- 

population increase, β denotes the predation rate 
coefficient, γ the predator mortality rate and δ the 

reproduction rate of predators per eaten prey. 
Another well-known example is given by the so- 

called Lorenz equations [74] that model the 
occurrence of deterministic chaos. That is, sensitive 

dependence on initial conditions is the essence of 

deterministic chaotic systems. We have 
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(eqs.8) 

where r, b, and σ are control parameters. 

The above is included in the conceptual framework 
adopted by various models of collective behaviours. 

For example, flocks, swarms, fish schooling 

simulators, see [47, 50, 51, 53, 75-80]. 
Our approach is to focus and identify high- 
representative macroscopic laws that are assumed 

appropriate to approximate the phenomenological 

interaction mechanisms leading to microscopic 
behaviours of pi. 

Often, such high-representative laws (correlations, 

power laws, scale invariance and self-similarity and 
statistical distributions) are assumed first as models 

of the generative interaction mechanisms. They are 

then considered as the structural dynamics of the 

phenomena. This may be acceptable for a certain type 
of simulations where the approximation is sufficient 

for studying. This is the case for evolutionary 
phenomena, and special cases such as strange 

attractors, distribution and convergence. On the other 

hand, it is misleading when used to act by using such 
laws, understood as models of the generative 

interaction mechanisms. This can lead to confusion 

over the acquired properties, processes of acquisition 
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or selection of fn,t occurring on real data, we may 

of properties, and properties of the interaction 
mechanisms. 
 
4.2.2 Variable rules 

At this point we consider possible approaches 
representing structural variations, for instance 

when in (eqs.6) fn changes in fn,t as in the system 

of equations (eqs.9), 
 
 

dQ1/dt = f1,t (Q1, Q2, … Qn) 

dQ2/dt = f2,t (Q1, Q2, … Qn) 

……………………………. 

dQn/dt = fn,t (Q1, Q2, … Qn) 

 
 

(eqs.9) 

The crucial aspect is that the temporal systemic 

Interdependence between fn,t, the mutual 

definition in terms of each other of dQn/dt, 

preserves their coherence. In an ideal system 

(eqs.9), the structural significance of time is 

related to the selection of valid fn,t, or of the 

transient non-applicability of any of them, or the 

usage of new nonequivalent but admissible ones. 

This, for example, is the case in non-smooth 

transitions. Consequently, we may determine in 

time t the variables Qn. This includes the related 

variables of fn,t and the possible transient non- 

involvement in fn,t of some Qk (0 ≤ k ≤ n). We 

may consider Qk = 0 until the complete non- 

involvement when k = n leads to the situation as 

represented in the system of equations (eqs.10) 

when momentary new variables Qn +1 and fn+1,t 

Are considered. Such dynamics in 

Representations is considered to be 

Corresponding to processes of structural 

dynamics. 

However, due to the dynamics, variability and 

fuzziness of the phenomenological multiple 

interaction mechanisms we face a situation 

which is analytically intractable. The variability, 

the sequences of fn,t analytically represent the 

Quasiness  of  the multiple interaction 

mechanisms. In modelling the quasiness of 

phenomenological dynamics of quasicoherent 

collective phenomena, specific variable sets of 

dominant interaction rules are considered. In this 

way, quasiness is modelled by considering such 

sets of rules. We select mechanisms depending 

on their ability to represent the real phenomenon. 

Realistically, by implementing simulations 

with available data we can consider context- 

sensitive processes from combinations of 

previously used fn,t.. For example, this can be 

achieved using optimization criteria, and 

artificial learning processes, through Recurrent 

Neural Networks (RNN) [81]. It is possible to 

figure out the possibility of identify generic 

approaches with effective simulations. This can 

then be used to anticipate characteristic 

behavioural aspects of specific categories of 

complex systems. Furthermore, in the inferring 

(4) 
consider cases in which sequences of data 
available are locally interpolated. 

By using appropriate approaches, we may 

consider local sequences with significant 

interpolation and infer or select suitable local and 

partial fn,t. It is one thing to interpolate the global 

evolutionary path of the system (for example of 

the variables Qn) but it is quite another to identify 

the fn,t that model partial sequences of the 

system. They should correspond to the 

occurrences of different interaction mechanisms. 

Where there are multiple and partial 

interpolations, their coherence is 

phenomenological. The challenge is to suitably 

represent this situation. This is the case when 

local  polynomial  interpolation  fits  many 

polynomials  within  specified  overlapping 

neighbourhoods. These  solutions  may be 

optimized by using suitable algorithms. 

This finally leads to a possible formalization of 

structural variability, as in the ideal system of 

equations (eqs.10), 
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dQ1/dt = f1,t (Q1, Q2, … Qn) 

→ (regular involvement at time t) 

dQ2/dt = f2,t (Q1, Q2, … Qn) ≡ dQ2/dt = 

f2,t−1 (Q1, Q2, … Qn+1) 
→ (state of invariability) 

dQ3/dt = f3,t (Q1, 0, … Qn) 
→ (regular involvement at time t except 

that Q2 = 0) 

……………………………. 

dQn/dt = fn,t (Q1, Q2, … Qn+1) 
→ (involvement at time t of new, 

possibly transient, variables Qn+1, …) 
dQn+1/dt = fn+1,t (Q1, Q2, … Qn+1) 

→ (involvement at time t of new, possibly 
transient, variables Qn+1 and fn+1,t. 
However, fn+1,t may be introduced without 
the introduction of new variable Qn+1, and 
be applied to previous ones (Q1, Q2, … Qn), 
replacing or combining with one or some of 
the previous fn,t. We deal with multiple 
crossing interpolations and corresponding 
fn,t, considering, for instance, new structural 
non-equivalent aspects having different 
natures such as trigonometric, exponential 
and fuzziness) 
 

(eqs.10) 
 

Therefore, the same complex system may be 

modelled by different versions of the systems of 

ordinary differential equation of type (eqs.10). In this 
case, we have multiple and simultaneous, possibly 

overlapping, models that when taken together 

constitute effective modelling over time. 
Modelling emergence of highly complex systems 

using (eqs.10) correspond to the multiplicity of the 
generating interaction mechanisms having quasiness 
as main feature. That is, their non-regular recurrence, 

inhomogeneous applications, partial occurring and 

possible combinations. Coherence is given by the 
constraint of being in a system of equations. 

Moreover, the variety of models of the type (eqs.10) 

may not apply to the whole system homogeneously. 
This depends on the real phenomenology and areas 

of the system which are modelled according to 

variants of the model. Some examples of zones 
include the boundary and central parts of the system, 

as in the dynamics of flocks or swarms. 
 

4.2.3 Networks 
The analytical representations depicted by (eqs.10) 

have an interesting conceptual correspondence to 

network representations of complex systems. The 

Science of Networks [82-85] represents systems as 

networks and systemic properties as network 
properties. The quasi and irregular roles of the 

equations in (eqs.10) corresponds to situations when 
the linkages between nodes over time are not static. 

That is, irregular, context-sensitive, non-linear and 
weighted. This situation may occur in a variety of 

ways, for instance, when networks are scale-free. 
That is, having a high number of nodes with few links 
or a small number of nodes with a high number of 

links. If the small-world property holds, then most 

distant nodes can be reached from every other node 
via a small number of intermediate links. This 

situation depicts the occurrence of quasi-networks: 

networks having variable cluster coefficients, degree 
distributions and fitness. The quasiness of networks 
is introduced in [86]. 

Other approaches may consider combinations of 

analytical and non-analytic computational processes, 
such as artificial neural networks (ANN). This is also 

the case for networks changing levels and number of 
nodes, such as RNN, (see Fig. 2). This is achieved by 
using internal states to process sequences of inputs, 

nature-inspired computational approaches [87], and 

changing class in cellular automata. We refer to the 

classic four classes considered by Wolfram [88] for 
the evolution of Cellular Automata characterized by: 
1) evolution towards a spatially homogeneous 
equilibrium state; 2) evolution toward stable or 

periodic attractors with finite spatial extent; 3) the 

possibility of chaotic evolutions with unlimited 
spatial growth of initial patterns; and 4) occurrence 

of localized patterns having great complexity with 
the ability to grow and contract. 
Systems of the type (eqs.10) and variable linkages in 

Networks are considered to represent the dynamics of 

quasiness in general and, in particular, multiple 

interaction mechanisms. 
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Neuron 

Neuron Neuron Neuron 
Neuron ….. 

Neuron Neuron Neuron 
Neuron ….. Neuron 

(generally or differently by areas or subsets of 

interacting entity). For example, with partial 
regularities, in variable combinations and with 

different parameters. It should be noted that 

quasification does not lead to increasing generality or 

Neuron Neuron          Neuron    …..    Neuron indefiniteness. It does, however, lead to the 

….. Neuron 
Neuron Neuron Neuron Neuron 

specification of quasiness of properties of specific 
collective behaviours. 

….. 
Neuron Similarly, we may consider the occurrence of quasi- 

Neuron Neuron Neuron Neuron 
 

InputLayer Hidden Layers OutputLayer 
____________________ 
The interconnections are weighed Wj 
 

Fig. 2 A schema of an artificial neural network with 

changing layers 
 

4.2.4 Quasification 

At this point, we may consider the process of 

quasification for the usual fixed models and 

constraints. Conceptually it is a matter to replace 
fixed properties with their inhomogeneity, 
multiplicity, non-regularity, and partiality of 

different combinations. 
Quasification may consist of analytical and network 

models transformed into non-continuous sequences 

and variable combinations of interaction rules and 
linkages. The quasi nature of the system is specified 
by the properties of such sequences and 
combinations. This includes, partial recurrences 

(with non or partial periodicity), random recurrences 

and inhomogeneous occurring (interaction rules and 

linkages relate to variable significant percentages of 
the system’s components). 

Regarding varying constraints, we may consider the 
behavioural constraints assumed by the well-known 
Reynold’s model [54]. The interaction mechanism 

being an ideal modelling of flock generations. In 

Reynold’s model, the constraints of the interacting 

mechanisms for individual components (birds) imply 
that they must: 

- Have motion pointing towards the average 

direction of locally adjacent components 

(alignment rules), 
- Avoid the crowding of locally adjacent 

components (separation rules) and 
- Point towards the average position of locally 

adjacent components (cohesion rules). 
There are many varieties of modalities by which such 

constraints may be respected (allowing quasiness) 

that further facilitate coherence and emergence. 
However, this configuration of constraints (having 

whatever formalizations) may be further quasified 
when such binding rules apply in different ways 

deterministic chaotic systems and quasi Lotka– 
Volterra systems applied in a specific way. In the 

same way, we may quasify systems of inferred rules 
such as interactive behavioural models of 
pedestrians, crowd formation, vehicle traffic and 

shoaling fish. Of course, we may consider the reverse 

processes of ‘undoing’ quasification by reducing the 
considered sequences of options until they adopt a 

single fixed configuration. This is in conceptual 

alignment with the processes that transform a set into 
a fuzzy set (and vice versa). 
 

4.2.5 A general view 

Multiple interpolations and systems of ordinary 

differential equations of type (eqs.10) conceptually 

correspond to the usage of multiple modelling of 
phenomena of emergence. This is established by 
multiple interaction mechanisms that are non- 

completely analytically representable modellable. 
Their modelling requires simultaneous multiple non- 

equivalent models as considered by the DYnamic 

uSAge of Models (DYSAM). For example, we 
mention simulations requiring multiple usage of 

different ANN, considered in [46, p. 76-85]. Here 

these models are realistic, either DYSAM-like or not 
(when the number of ANN used is just one). For the 

latter, the modelling is quasi-DYSAM. 

In collective behaviours they are not properly 
reducible, but primarily not understandable when 
considered being due to parametrical changes in the 

fixed model of equations used as a general model of 

collective behaviours (cases a and b in Section 3). 
While partial simulations may be implemented with 

such reductions, i.e., the use of single fixed generic 
models, simulations of experimental interventions 
require more proper modelling that considers not 

only approximate structural dynamics. 

The cases mentioned for system (eqs.10), of Section 

4.2.2, are considered to be examples of models of 
structural changes in the interaction mechanisms. In 

collective behaviours, they are irreducible and 
primarily not understandable as due to parametrical 

changes in the fixed model of equations used as a 
general model of collective behaviours (cases a and 

b, in Section 3). While partial simulations may be 
implemented with such reductions, using single fixed 
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generic models, simulations of  experimental 

interventions require proper modelling beyond 
approximate structural dynamics. 

We should use proper modelling when considering 

flocks or swarms under attack from a predator and 
under sudden environmental perturbations. A 

tentative example amenable to this approach is 

available on-line [89], see also [90]. This is related to 

a flock simulator designed on the basis of a specific 
generative interaction mechanism. In this case, the 

well-known Reynold’s model, (see Section 4.2.4), for 

implementing simulations where at each instant all 
microscopic spatial information related to each single 

boid is available. 

Multiple systems establishing coherent collective 

behaviours represent cases modelled as 
superimposed quasi-simultaneous systems. As in the 

cases of multiple systems of ordinary differential 

equations (eqs.10), in Section 4.2.2, and multiple 
linkages in networks, in Section 4.2.3. 

In models of collective behaviours we deal with the 

establishment of coherence and quasicoherences 
represented by the occurrence of various phenomena. 

This includes scale-free correlations among measures 
of various properties that occur at similar times. 

Moreover, for significant percentages of components 

such as directional, metrical, topological, and 
mediated information transfer [91, 48]. 

The conceptual symbolic case consisting of multiple 

simultaneous and possibly crossing systems of 

ordinary differential equations (eqs.10) and networks 
may have a variety of different versions. This 

includes the use of sub-symbolic [9] ANN (the 

networked, weighted, occurring at different levels, 
computational processing of ANN is considered non- 

explicit and non-analytically represented. For this 

reason, it is called sub-symbolic, whereas the ANN 
program is an explicit algorithm, see Fig. 2), nature- 

inspired [87, 92, 93] computational approaches and 

their combinational change over time. This is 

expected when multiplicity relates to the effective 
generative interaction mechanisms. The multiple 

interaction mechanisms, such as given by fn,t in 

systems (eqs.9) and (eqs.10), (in Section 4.2.2), and 
their quasiness are considered conceptually 

equivalent to the inferred generative interaction 
mechanisms (see Table 1 for a concise view). 

1) Ideal fixed models acquire characterizing 
properties of complex systems. For example, 
attractors, behavioural, coherences, 
correlation and power laws. 

2) Ideal fixed models on multiply interpolated 
real data and constraints. 

3) Ideal fixed models of inferred interaction 
mechanisms, constraints suitable to simulate 
crucial features and properties of complex 
systems. 

4) Ideal and quasified fixed models acquiring 
characterizing properties in quasi ways. That 
is, changes in number, type and applicability 
of equations. This occurs in multiple, 
simultaneous, possibly overlapping systems 
of ordinary differential equation (9) and in a 
sequence of partial networks. Changing the 
rules, their domain of application and 
succeeding each other is considered to 
correspond to the structural dynamics and 
quasiness of the phenomenological generative 
interaction mechanisms. An example is the 
quasification of simulation models, e.g., 
agent-based models. 

5) Ideal  and quasified fixed models on 
interpolations of real data; designed, detected, 
inferred constraints. It is a matter of ideal 
models of the generative interaction 
mechanisms where the focus is on the 
designed, detected, or inferred multiple 
interaction mechanisms and constraints. 

6) Non-ideal models as a mixture of general 
principles and of specific choices. For instance 
data-driven and based on artificial learning, 
properties of interpolations, Big Data 
approaches and constraints to the interaction 
mechanisms detected from real data of 
different nature. Examples are found in 3D 
data collected using GPS, stereo-metric and 
computer-vision applications and economic 
datasets. Typical examples are profiles, 
behavioural standards, models as 
formalisations of phenomenological 
constraints to the interaction mechanisms 
(inferred rules of interaction for vehicular 
traffic) and shoaling fish. Such non-ideal 
models are characterized by quasiness 
representing their structural, 
phenomenological, and (irregularly) coherent 
dynamics. 
 
 

Table 1  Ideal fixed models; ideal quasified fi

xed 
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models; non-ideal models. 
5 Final summary 
Standard research and simulation approaches aim to 
identify the better fitting interpolative model. 
Generating the acquired properties that are supposed 
to approximate to the best the phenomenological real 
mechanism. Under certain conditions, the 
Phenomena of quasiness and quasicoherence, if 
applicable, are assumed to be negligible as 
microscopically irrelevant on the macroscopic best- 
fitting model. These conditions apply when dealing 
with populations of generative interaction 
mechanisms that are intractable by their 
inhomogeneity, limited period of validity, 
irregularities and non-repeatability in the application. 
This situation corresponds to the microscopic 
intractability of components when suitable strategies 
are designed to look for statistical properties. (Such 
as molecules of a gas, for which statistical 
thermodynamics considers only systems of very large 
numbers of molecules and neglects details of 
individual behaviours). 
We assume such omissions are admissible when 
considering microscopic data values for components 
and their acquired properties. This approach, 
nevertheless, hides the structural dynamics of 
fundamental importance to the design and execution 
of interventions to modify an emergent complex 
system hence, permitting the interpretation of 
structural interventions on the interaction 
mechanisms. While reductionist assumptions, such 
as the admissibility of separability, completeness and 
finiteness may be contextually effective, they cannot 
be generalized, thus, making emergent properties and 
mechanisms of emergence theoretically invisible [8, 
p. 359]. 
In the absence of hypotheses about, or knowledge of, 
the structural dynamics phenomena modifying 
interventions are reduced to non-structural, 
symptomatic, interventions on properties of the 
components and on the parameters of the 
interpolative models. It is also a matter of reducing 
complex systems to non-complex systems and 
assuming a suitable simplified approach, which is 
often self-defeating [94]. This coincides with the 
inability to represent and manage complex 
phenomena such as those that occur in economic, 
environment (e.g., climate and territorial safety), 
medical (e.g., pandemics and migratory capacity and 
resistance in collective aggregations of tumour cells 
leading to metastases), and social (e.g., criminality) 
settings. 
Other approaches consist of collecting data from real 
phenomena such as using stereo-metric digital 
photogrammetry data related to real flocks [48], data 
provided by GPS systems, data from ad hoc 

electronic devices of coupled oscillators generating 
emergence [95, 96], and data of different natures, 
such as collective phenomena in economics and of 
signals. Such data are usually interpolated, and their 
collective properties are assumed to be validating 
properties of the interpolative models. 
Real, phenomenological interactive mechanisms, 
such as for living beings [97, 98] are not intrinsically, 
formally, representable and analytically intractable if 
not simplified and idealized. However, the non- 
explicit phenomenological interaction mechanisms 
may be represented by some of their supposed 
dominant critical features. In this regard, we 
considered approaches such as systems of differential 
equations as in (eqs.10) and quasi-networks that can 
represent the quasiness of structural dynamics, 
supposed as critical systemic feature of 
phenomenological interactive mechanisms 
supporting emergence of collective systems. This 
approach may be applied in reverse to quasify 
phenomenological interactions. 
We considered here the property of quasiness as 
systems of inferred analytical models of 
critical feature, as item of an ideal list to be extended 
by future research since phenomenological 
coherence remains a matter of research, because: 
“Whatever the origin of the scale-free behaviour is, 
..., the fact that the correlation is almost not decaying 
with the distance, is by far the most surprising and 
exotic feature of bird flocks. How starlings achieve 
such a strong correlation remains a mystery to us.” 
[48] (Cavagna et al., 2010). 
 
 
6 Further research 
Research should focus on developing approaches for 
multiple modelling using multiple crossed systems of 
type (eqs.10) integrated with other sub-symbolic 
approaches. This includes ANN with variable, hidden 
layers, number of neurons, networks with variable 
linkage and nature-inspired computations. We have 
introduced conceptual approaches and lines of 
research to be implemented by corresponding models 
and simulations for experimentation. 
It may be fruitful to consider approaches based on 
identifying explicit and equivalent possible functions 
fn,t, based on machine-learning techniques, game 
theory, optimization techniques, analogue 
processing, and clustering techniques allowing to 
consider clusters [8, p. 102-116] rather than 
microscopic entities. 
The challenge is to develop suitable approaches to 
model generative interaction mechanisms that fit the 
quasiness of phenomenological data. Such methods 
facilitate appropriate structural interventions on 
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complex systems. The focus should be on ideal or 
inferred models of effective generative interaction 
mechanisms and their quasiness. However, it might 
possibly also proceed by identifying categories of 
phenomenological interaction mechanisms of 
complex systems. Furthermore, as has happens in 
physics, a long-term research perspective might be to 
reconceptualize systems as fields rather than as 
interacting entities [8, p. 231–233]. The problems 
considered here would then be completely redefined. 
 
 
7 Conclusions 
Highly complex systems in which multiple processes 
of emergence occur, acquiring coherent properties 
over time, should not be modelled by adopting the 
same approaches used for other systems that possess 
stable temporal properties. Consequently, in 
modelling complex systems, it is not sufficient just 
modelling some crucial properties. Rather, we should 
focus on their acquisition processes and their 
features. Giving up, the search for the unique and 
optimal model constituted of fixed and iterated rules 
such as equations and structures of networks. 
Dealing with complex systems, modelling and 
simulation of specific properties does not correspond 
to the simulation of the underlying structural 
dynamics of the system and its quasiness. The 
quasiness, the opportune incompleteness -allowing 
compatibility with processes of emergence of the 
models, is intended to constitute the crucial feature of 
multiple phenomenological interaction mechanisms. 
They are applied in an irregular and inhomogeneous 
way in the dynamics of loss, recovery and acquisition 
of properties. This occurs in variable ways, for which 
a complex system is not always a system, the same 
system and not just a system. 
In this study, we have introduced mathematical 
approaches to represent such theoretical 
incompleteness. The quasiness of ideal and non-ideal 
models for detected, inferred or represented 
phenomenological interaction mechanisms 
generative of emergence of complex systems. 
Importantly, as we have elaborated in this study, 
neglecting the quasiness of complex systems leads to 
the adoption of fixed, simplified, optimized ideal 
models suitable for non-complex systems or, at most, 
for specific properties. This omission involves taking 
approaches that are, at the very least, inadequate to 
act on the emergence of complex systems. This 
includes: 
 Changing, regulating and maintaining acquired 
properties of emergent phenomena, 
 Recognizing phenomena as emergent, 

•  Inducing phenomena of emergence in 
populations that are collectively interacting, 
•  Merging emergent phenomena, 
•  Inhibiting or accelerating the establishment 
of processes of emergence, 
•  Managing the compatibility between 
processes of emergence, and 
•  Varying the levels and type of quasiness. 
These concerns relate to the ability to represent and 
manage complex phenomena that occur in examples 
of climatic, economic, medical and social settings. 
We have presented some possible approaches for 
appropriate modelling with attention to structural 
dynamics. 
The present research article is dedicated to the 
memory of Professor Eliano Pessa with whom we 
were studying these issues and to celebrate his 
valuable interdisciplinary contribution and expertise 
in the science of complexity. 
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