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Abstract: A stochastic model is said to be insensitive if its stationary distribution depends on one or more of its 
constituent lifetime distributions only through the mean. In this paper we shall discuss insensitivity by presenting a 
detailed analysis of the canonical insensitive queueing model, by the Erlang loss system. 
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Introduction 

We shall start our discussion of insensitivity 
by thinking about the M/M/C/C (or Erlang Loss) 
queue. This is a queueing system which has Poisson 
arrivals, exponential service times, C servers and no 
room for queueing customers that arrive when the 
system is full. The queue can be modelled by a 
continuous-time Markov chain with state space {0,1,2, 

. . . ,C}. If we denote the arrival rate by   and the 

mean service time by
1


, then the stationary 

probability  n  that there are n customers present 

satisfies the equations  
 

 l p (0) = m p (1), 
 

(l +nm) p  (n) = l p (n−1)+(n+1)m p (n+1), 0 
< n <C, 

       Cm p (C) = l p  (C−1).  
    (1.1) 
The solution of equations (1.1) that sums to 
unity is 
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That the system is full gives the probability 

that arriving customers cannot be accommodated in the 
queue. 

Expressed as a function of   and C, the 

expression on the right hand side of equation (1.3) is 
known as Erlang’s Loss Formula, which we shall 

denote by  ,E C . Throughout most of the 

twentieth century, this formula was used extensively by 
the telecommunications networking community for 
dimensioning links. 

However, let us think a little more about the 
use of a Markovian model for the modelling of 
telephone links. The average duration of a traditional 
phone conversation was three minutes. An easy 
calculation shows that if call durations are 
exponentially distributed with mean three minutes, then 
the probability that a call exceeds 60 minutes is about 
2×10−9. So, if call durations really were exponentially 
distributed, very few of us would ever have made a 
phone call that lasted longer than one hour. Since most 
of us have made such calls, we are led to the 
conclusion that the ‘service times’ corresponding to 
real telephone conversations are not exponentially 
distributed and that a Markovian model for the system 
is based upon assumptions that are not satisfied. 

So why has the Erlang Loss Formula been so 
successful? The reason is that the M/G/C/C queue is 
insensitive to the service time distribution: the 
stationary probability that there are n customers present 
is given by (1.2) irrespective of the shape of the service 

time distribution, provided that the mean is 
1


. 

 
Erlang himself [9] noticed that the stationary 

probability that there are n customers present in an 
M/G/C/C queue when the service times are 
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deterministic with duration 
1


is the same as it is when 

service times are exponentially distributed with mean 

1


. Subsequently, with different levels of rigour, 

Kosten [4], Fortet [3] and Sevastyanov [7] showed that 
the service time distribution can be arbitrary without 
affecting the form of the stationary probabilities, 
assuming that the mean is kept constant. In fact more is 
possible: service times can be inter-event times in an 
arbitrary stationary point process with rate   and the 

stationary distribution is still given by (1.2), see K¨onig 
and Matthes [10]. Other authors who considered the n 
server loss system with generally distributed service 
times from the point of view of insensitivity include 
Takacs [8] who investigated the stationary distribution 
at arrival epochs and Fakinos [2] who looked at a 
group arrival, group departure system. 

 
Baskett, Chandy, Muntz and Palacios [5] 

considered a network of queues where each node could 
be one of four different types. These were: 

 
1. A single server, first-come-first-served queue with 

exponential service times, 
2. A single server, processor-sharing queue with 

service times chosen according to a general 
distribution with a rational Laplace Transform, 

3. An infinite-server queue with service times chosen 
according to a general distribution with a rational 
Laplace Transform, and 

4. A single-server, preemptive-resume last-come-first-
served queue with service times again chosen 
according to a general distribution with a rational 
Laplace Transform. 

 
They showed that the queueing network 

possesses a steady state distribution that is a product 
form over the nodes and, moreover, depends on the 
lifetime distribution at types (2), (3) and (4) nodes only 
through the mean. Weak continuity arguments later 
showed that the restriction to distributions with rational 
Laplace transform was unnecessary, although many 
later papers continued to emphasize this restriction. 

Kelly [11, 12] introduced the concept of the 
symmetric queue. This can be thought of as a 
generalization of the type (2), (3) and (4) nodes of [4]. 
A symmetric queue is a queue with multiple customer 
classes that operates in the following manner: 
 
1. The service requirement of a customer is a random 

variable whose distribution may depend on the 
class of customer. 

2. The total service effort is supplied at rate f (n) 
where n is the number of customers in the queue. 

3. A proportion g (ℓ,n) of this effort is directed to the 
customer in position ℓ. When this customer 
leaves the queue customers in positions ℓ+1, ℓ+2, 
. . . ,n move to positions ℓ, ℓ+1, . . . ,n−1 
respectively. 

4. A customer arriving at the queue moves into 
position ℓ with probability  g(ℓ,n+1). Customers 
previously in positions ℓ, ℓ+1, . . . ,n move to 
positions ℓ+1, ℓ+ 2, . . . ,n+1 respectively. 

 
Processor sharing queues, infinite server queues 

and last come first served queues are all examples of 
symmetric queues. By keeping track of the current 
‘phase’ of service, Kelly showed that a stationary 
symmetric queue is insensitive to the service time 
distribution, provided that it can be represented as a 
mixture of Erlang distributions. The rigorous extension 
to arbitrarily distributed lifetimes was carried out by 
Barbour [1]. Furthermore, Kelly established that a 
network of symmetric queues has a stationary 
distribution that factorizes into a product form over the 
nodes, and itself is insensitive. 
 
Conclusion 

In this paper, we have presented an 
introduction to insensitivity as it occurs in stochastic 
models. Our approach has been to illustrate the main 
ideas using simple special cases. 
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